These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

580 related articles for article (PubMed ID: 1695107)

  • 1. The equilibrium partition function and base pair binding probabilities for RNA secondary structure.
    McCaskill JS
    Biopolymers; 1990; 29(6-7):1105-19. PubMed ID: 1695107
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Partition function and base pairing probabilities for RNA-RNA interaction prediction.
    Huang FW; Qin J; Reidys CM; Stadler PF
    Bioinformatics; 2009 Oct; 25(20):2646-54. PubMed ID: 19671692
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An algorithm for computing nucleic acid base-pairing probabilities including pseudoknots.
    Dirks RM; Pierce NA
    J Comput Chem; 2004 Jul; 25(10):1295-304. PubMed ID: 15139042
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An estimate of the nearest neighbor base-pair content of 5S RNA using CD and absorption spectroscopy.
    Johnson KH; Gray DM
    Biopolymers; 1991 Mar; 31(4):385-95. PubMed ID: 1863690
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Expanded sequence dependence of thermodynamic parameters improves prediction of RNA secondary structure.
    Mathews DH; Sabina J; Zuker M; Turner DH
    J Mol Biol; 1999 May; 288(5):911-40. PubMed ID: 10329189
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Differential role of the intermolecular base-pairs G292-C(75) and G293-C(74) in the reaction catalyzed by Escherichia coli RNase P RNA.
    Busch S; Kirsebom LA; Notbohm H; Hartmann RK
    J Mol Biol; 2000 Jun; 299(4):941-51. PubMed ID: 10843849
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The 3D arrangement of the 23 S and 5 S rRNA in the Escherichia coli 50 S ribosomal subunit based on a cryo-electron microscopic reconstruction at 7.5 A resolution.
    Mueller F; Sommer I; Baranov P; Matadeen R; Stoldt M; Wöhnert J; Görlach M; van Heel M; Brimacombe R
    J Mol Biol; 2000 Apr; 298(1):35-59. PubMed ID: 10756104
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An interactive framework for RNA secondary structure prediction with a dynamical treatment of constraints.
    Gaspin C; Westhof E
    J Mol Biol; 1995 Nov; 254(2):163-74. PubMed ID: 7490740
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The linkage between magnesium binding and RNA folding.
    Misra VK; Draper DE
    J Mol Biol; 2002 Apr; 317(4):507-21. PubMed ID: 11955006
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structural changes in base-paired region 28 in 16 S rRNA close to the decoding region of the 30 S ribosomal subunit are correlated to changes in tRNA binding.
    Ericson G; Minchew P; Wollenzien P
    J Mol Biol; 1995 Jul; 250(4):407-19. PubMed ID: 7542348
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Solution conformations of unmodified and A(37)N(6)-dimethylallyl modified anticodon stem-loops of Escherichia coli tRNA(Phe).
    Cabello-Villegas J; Winkler ME; Nikonowicz EP
    J Mol Biol; 2002 Jun; 319(5):1015-34. PubMed ID: 12079344
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Bases defining an ammonium and magnesium ion-dependent tertiary structure within the large subunit ribosomal RNA.
    Lu M; Draper DE
    J Mol Biol; 1994 Dec; 244(5):572-85. PubMed ID: 7527467
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structure and function of the conserved 690 hairpin in Escherichia coli 16 S ribosomal RNA: analysis of the stem nucleotides.
    Morosyuk SV; Lee K; SantaLucia J; Cunningham PR
    J Mol Biol; 2000 Jun; 300(1):113-26. PubMed ID: 10864503
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Slow folding kinetics of RNase P RNA.
    Zarrinkar PP; Wang J; Williamson JR
    RNA; 1996 Jun; 2(6):564-73. PubMed ID: 8718685
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An RNA structural determinant for tRNA recognition.
    Hamann CS; Hou YM
    Biochemistry; 1997 Jul; 36(26):7967-72. PubMed ID: 9201943
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mutational and structural analysis of the RNA binding site for Escherichia coli ribosomal protein S7.
    Dragon F; Payant C; Brakier-Gingras L
    J Mol Biol; 1994 Nov; 244(1):74-85. PubMed ID: 7525976
    [TBL] [Abstract][Full Text] [Related]  

  • 17. NMR structure of stem-loop SL2 of the HIV-1 psi RNA packaging signal reveals a novel A-U-A base-triple platform.
    Amarasinghe GK; De Guzman RN; Turner RB; Summers MF
    J Mol Biol; 2000 May; 299(1):145-56. PubMed ID: 10860728
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Periodic conformational changes in rRNA: monitoring the dynamics of translating ribosomes.
    Polacek N; Patzke S; Nierhaus KH; Barta A
    Mol Cell; 2000 Jul; 6(1):159-71. PubMed ID: 10949037
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evaluation of uranyl photocleavage as a probe to monitor ion binding and flexibility in RNAs.
    Wittberger D; Berens C; Hammann C; Westhof E; Schroeder R
    J Mol Biol; 2000 Jul; 300(2):339-52. PubMed ID: 10873469
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A tyrosyl-tRNA synthetase can function similarly to an RNA structure in the Tetrahymena ribozyme.
    Mohr G; Caprara MG; Guo Q; Lambowitz AM
    Nature; 1994 Jul; 370(6485):147-50. PubMed ID: 8022484
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 29.