BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

101 related articles for article (PubMed ID: 16951074)

  • 1. Genetic dissection of intermated recombinant inbred lines using a new genetic map of maize.
    Fu Y; Wen TJ; Ronin YI; Chen HD; Guo L; Mester DI; Yang Y; Lee M; Korol AB; Ashlock DA; Schnable PS
    Genetics; 2006 Nov; 174(3):1671-83. PubMed ID: 16951074
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Linkage mapping of 1454 new maize candidate gene Loci.
    Falque M; Décousset L; Dervins D; Jacob AM; Joets J; Martinant JP; Raffoux X; Ribière N; Ridel C; Samson D; Charcosset A; Murigneux A
    Genetics; 2005 Aug; 170(4):1957-66. PubMed ID: 15937132
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The MITE family heartbreaker (Hbr): molecular markers in maize.
    Casa AM; Brouwer C; Nagel A; Wang L; Zhang Q; Kresovich S; Wessler SR
    Proc Natl Acad Sci U S A; 2000 Aug; 97(18):10083-9. PubMed ID: 10963671
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Pleiotropy, epistasis and the genetic architecture of quantitative traits.
    Mackay TFC; Anholt RRH
    Nat Rev Genet; 2024 Apr; ():. PubMed ID: 38565962
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Validation and Characterization of Maize Multiple Disease Resistance QTL.
    Martins LB; Rucker E; Thomason W; Wisser RJ; Holland JB; Balint-Kurti P
    G3 (Bethesda); 2019 Sep; 9(9):2905-2912. PubMed ID: 31300480
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Use of F2 Bulks in Training Sets for Genomic Prediction of Combining Ability and Hybrid Performance.
    Technow F
    G3 (Bethesda); 2019 May; 9(5):1557-1569. PubMed ID: 30862623
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Using Maize Chromosome Segment Substitution Line Populations for the Identification of Loci Associated with Multiple Disease Resistance.
    Lopez-Zuniga LO; Wolters P; Davis S; Weldekidan T; Kolkman JM; Nelson R; Hooda KS; Rucker E; Thomason W; Wisser R; Balint-Kurti P
    G3 (Bethesda); 2019 Jan; 9(1):189-201. PubMed ID: 30459178
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Intragenic Meiotic Crossovers Generate Novel Alleles with Transgressive Expression Levels.
    Liu S; Schnable JC; Ott A; Yeh CE; Springer NM; Yu J; Muehlbauer G; Timmermans MCP; Scanlon MJ; Schnable PS
    Mol Biol Evol; 2018 Nov; 35(11):2762-2772. PubMed ID: 30184112
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Parent-progeny imputation from pooled samples for cost-efficient genotyping in plant breeding.
    Technow F; Gerke J
    PLoS One; 2017; 12(12):e0190271. PubMed ID: 29272307
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Spatial Mapping and Profiling of Metabolite Distributions during Germination.
    Feenstra AD; Alexander LE; Song Z; Korte AR; Yandeau-Nelson MD; Nikolau BJ; Lee YJ
    Plant Physiol; 2017 Aug; 174(4):2532-2548. PubMed ID: 28634228
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Unbiased K-mer Analysis Reveals Changes in Copy Number of Highly Repetitive Sequences During Maize Domestication and Improvement.
    Liu S; Zheng J; Migeon P; Ren J; Hu Y; He C; Liu H; Fu J; White FF; Toomajian C; Wang G
    Sci Rep; 2017 Feb; 7():42444. PubMed ID: 28186206
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Analysis of recombination QTLs, segregation distortion, and epistasis for fitness in maize multiple populations using ultra-high-density markers.
    Li C; Li Y; Shi Y; Song Y; Zhang D; Buckler ES; Zhang Z; Li Y; Wang T
    Theor Appl Genet; 2016 Sep; 129(9):1775-84. PubMed ID: 27379519
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An ultra-high-density map as a community resource for discerning the genetic basis of quantitative traits in maize.
    Liu H; Niu Y; Gonzalez-Portilla PJ; Zhou H; Wang L; Zuo T; Qin C; Tai S; Jansen C; Shen Y; Lin H; Lee M; Ware D; Zhang Z; Lübberstedt T; Pan G
    BMC Genomics; 2015 Dec; 16():1078. PubMed ID: 26691201
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Optimized breeding strategies for multiple trait integration: III. Parameters for success in version testing.
    Sun X; Mumm RH
    Mol Breed; 2015; 35(10):201. PubMed ID: 26491398
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Shared Genomic Regions Between Derivatives of a Large Segregating Population of Maize Identified Using Bulked Segregant Analysis Sequencing and Traditional Linkage Analysis.
    Haase NJ; Beissinger T; Hirsch CN; Vaillancourt B; Deshpande S; Barry K; Buell CR; Kaeppler SM; de Leon N
    G3 (Bethesda); 2015 Jun; 5(8):1593-602. PubMed ID: 26038364
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The naked endosperm genes encode duplicate INDETERMINATE domain transcription factors required for maize endosperm cell patterning and differentiation.
    Yi G; Neelakandan AK; Gontarek BC; Vollbrecht E; Becraft PW
    Plant Physiol; 2015 Feb; 167(2):443-56. PubMed ID: 25552497
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Efficient molecular marker design using the MaizeGDB Mo17 SNPs and Indels track.
    Settles AM; Bagadion AM; Bai F; Zhang J; Barron B; Leach K; Mudunkothge JS; Hoffner C; Bihmidine S; Finefield E; Hibbard J; Dieter E; Malidelis IA; Gustin JL; Karoblyte V; Tseung CW; Braun DM
    G3 (Bethesda); 2014 Apr; 4(6):1143-5. PubMed ID: 24747759
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Optimized breeding strategies for multiple trait integration: II. Process efficiency in event pyramiding and trait fixation.
    Peng T; Sun X; Mumm RH
    Mol Breed; 2014; 33(1):105-115. PubMed ID: 24482601
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Optimized breeding strategies for multiple trait integration: I. Minimizing linkage drag in single event introgression.
    Peng T; Sun X; Mumm RH
    Mol Breed; 2014; 33(1):89-104. PubMed ID: 24482600
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 6.