BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

102 related articles for article (PubMed ID: 16951170)

  • 41. Identification of minimal enhancer elements sufficient for Pax3 expression in neural crest and implication of Tead2 as a regulator of Pax3.
    Milewski RC; Chi NC; Li J; Brown C; Lu MM; Epstein JA
    Development; 2004 Feb; 131(4):829-37. PubMed ID: 14736747
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Cell-type-specific regulation of distinct sets of gene targets by Pax3 and Pax3/FKHR.
    Begum S; Emami N; Cheung A; Wilkins O; Der S; Hamel PA
    Oncogene; 2005 Mar; 24(11):1860-72. PubMed ID: 15688035
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Melanocyte stem cell maintenance and hair graying.
    Steingrímsson E; Copeland NG; Jenkins NA
    Cell; 2005 Apr; 121(1):9-12. PubMed ID: 15820674
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Pax3 functions at a nodal point in melanocyte stem cell differentiation.
    Lang D; Lu MM; Huang L; Engleka KA; Zhang M; Chu EY; Lipner S; Skoultchi A; Millar SE; Epstein JA
    Nature; 2005 Feb; 433(7028):884-7. PubMed ID: 15729346
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Pax3 and Pax7 have distinct and overlapping functions in adult muscle progenitor cells.
    Relaix F; Montarras D; Zaffran S; Gayraud-Morel B; Rocancourt D; Tajbakhsh S; Mansouri A; Cumano A; Buckingham M
    J Cell Biol; 2006 Jan; 172(1):91-102. PubMed ID: 16380438
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Pax3 target gene recognition occurs through distinct modes that are differentially affected by disease-associated mutations.
    Corry GN; Underhill DA
    Pigment Cell Res; 2005 Dec; 18(6):427-38. PubMed ID: 16280008
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Proliferative and apoptotic differences between alveolar rhabdomyosarcoma subtypes: a comparative study of tumors containing PAX3-FKHR or PAX7-FKHR gene fusions.
    Collins MH; Zhao H; Womer RB; Barr FG
    Med Pediatr Oncol; 2001 Aug; 37(2):83-9. PubMed ID: 11496344
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Epistatic relationship between Waardenburg syndrome genes MITF and PAX3.
    Watanabe A; Takeda K; Ploplis B; Tachibana M
    Nat Genet; 1998 Mar; 18(3):283-6. PubMed ID: 9500554
    [TBL] [Abstract][Full Text] [Related]  

  • 49. A transgenic neuroanatomical marker identifies cranial neural crest deficiencies associated with the Pax3 mutant Splotch.
    Tremblay P; Kessel M; Gruss P
    Dev Biol; 1995 Oct; 171(2):317-29. PubMed ID: 7556916
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Proliferation and morphology of melanoma cells and benign human melanocytes under varying culture conditions.
    Eberle J; Krasagakis K; Garbe C; Orfanos CE
    Melanoma Res; 1993 Apr; 3(2):107-12. PubMed ID: 8518548
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Dmrt2 and Pax3 double-knockout mice show severe defects in embryonic myogenesis.
    Seo KW
    Comp Med; 2007 Oct; 57(5):460-8. PubMed ID: 17974128
    [TBL] [Abstract][Full Text] [Related]  

  • 52. The roles of Frizzled-3 and Wnt3a on melanocyte development: in vitro studies on neural crest cells and melanocyte precursor cell lines.
    Chang CH; Tsai RK; Tsai MH; Lin YH; Hirobe T
    J Dermatol Sci; 2014 Aug; 75(2):100-8. PubMed ID: 24815018
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Hox/Pbx and Brn binding sites mediate Pax3 expression in vitro and in vivo.
    Pruitt SC; Bussman A; Maslov AY; Natoli TA; Heinaman R
    Gene Expr Patterns; 2004 Oct; 4(6):671-85. PubMed ID: 15465489
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Pax3 isoforms in sensory neurogenesis: expression and function in the ophthalmic trigeminal placode.
    Adams JS; Sudweeks SN; Stark MR
    Dev Dyn; 2014 Oct; 243(10):1249-61. PubMed ID: 24375872
    [TBL] [Abstract][Full Text] [Related]  

  • 55. The effect of antisense tyrosinase-related protein 1 on melanocytes and malignant melanoma cells.
    Li CY; Gao TW; Wang G; Han ZY; Shen Z; Li TH; Liu YF
    Br J Dermatol; 2004 Jun; 150(6):1081-90. PubMed ID: 15214892
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Pax genes in embryogenesis and oncogenesis.
    Wang Q; Fang WH; Krupinski J; Kumar S; Slevin M; Kumar P
    J Cell Mol Med; 2008 Dec; 12(6A):2281-94. PubMed ID: 18627422
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Conditional immortalization establishes a repertoire of mouse melanocyte progenitors with distinct melanogenic differentiation potential.
    Yang K; Chen J; Jiang W; Huang E; Cui J; Kim SH; Hu N; Liu H; Zhang W; Li R; Chen X; Kong Y; Zhang J; Wang J; Wang L; Shen J; Luu HH; Haydon RC; Lian X; Yang T; He TC
    J Invest Dermatol; 2012 Oct; 132(10):2479-2483. PubMed ID: 22592154
    [No Abstract]   [Full Text] [Related]  

  • 58. Melanocytes and melanoma: hooked on elongation.
    Lister JA
    Pigment Cell Melanoma Res; 2011 Jun; 24(3):397-8. PubMed ID: 22489316
    [No Abstract]   [Full Text] [Related]  

  • 59. Melanoma as a macrophage/melanocyte hybrid and the symbiotic nature of eukaryotic cells.
    Pawelek JM
    Melanoma Res; 1993 Feb; 3(1):75-6. PubMed ID: 8471840
    [No Abstract]   [Full Text] [Related]  

  • 60. IPCC2020-Advancing melanocyte science and friendship in the Land of the Rising Sun.
    Manga P; Suzuki T; Hayashi M
    Pigment Cell Melanoma Res; 2021 Mar; 34(2):188-189. PubMed ID: 33682372
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.