BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 16951568)

  • 1. Increasing cortical activity in auditory areas through neurofeedback functional magnetic resonance imaging.
    Yoo SS; O'Leary HM; Fairneny T; Chen NK; Panych LP; Park H; Jolesz FA
    Neuroreport; 2006 Aug; 17(12):1273-8. PubMed ID: 16951568
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Attention modulates sound processing in human auditory cortex but not the inferior colliculus.
    Rinne T; Stecker GC; Kang X; Yund EW; Herron TJ; Woods DL
    Neuroreport; 2007 Aug; 18(13):1311-4. PubMed ID: 17762703
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Who is telling what from where? A functional magnetic resonance imaging study.
    Mathiak K; Menning H; Hertrich I; Mathiak KA; Zvyagintsev M; Ackermann H
    Neuroreport; 2007 Mar; 18(5):405-9. PubMed ID: 17496793
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Perception modulates auditory cortex activation.
    Pollmann S; Maertens M
    Neuroreport; 2006 Nov; 17(17):1779-82. PubMed ID: 17164663
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Voice familiarity engages auditory cortex.
    Birkett PB; Hunter MD; Parks RW; Farrow TF; Lowe H; Wilkinson ID; Woodruff PW
    Neuroreport; 2007 Aug; 18(13):1375-8. PubMed ID: 17762716
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cerebral response to 'voiceness': a functional magnetic resonance imaging study.
    Bélizaire G; Fillion-Bilodeau S; Chartrand JP; Bertrand-Gauvin C; Belin P
    Neuroreport; 2007 Jan; 18(1):29-33. PubMed ID: 17259856
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Functional asymmetry in human primary auditory cortex: identified from longitudinal fMRI study.
    Yoo SS; O'leary HM; Dickey CC; Wei XC; Guttmann CR; Park HW; Panych LP
    Neurosci Lett; 2005 Jul 22-29; 383(1-2):1-6. PubMed ID: 15936503
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Functional asymmetry in primary auditory cortex for processing musical sounds: temporal pattern analysis of fMRI time series.
    Izumi S; Itoh K; Matsuzawa H; Takahashi S; Kwee IL; Nakada T
    Neuroreport; 2011 Jul; 22(10):470-3. PubMed ID: 21642880
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Differential patterns of multisensory interactions in core and belt areas of human auditory cortex.
    Lehmann C; Herdener M; Esposito F; Hubl D; di Salle F; Scheffler K; Bach DR; Federspiel A; Kretz R; Dierks T; Seifritz E
    Neuroimage; 2006 May; 31(1):294-300. PubMed ID: 16473022
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dissociated lateralization of transient and sustained blood oxygen level-dependent signal components in human primary auditory cortex.
    Lehmann C; Herdener M; Schneider P; Federspiel A; Bach DR; Esposito F; di Salle F; Scheffler K; Kretz R; Dierks T; Seifritz E
    Neuroimage; 2007 Feb; 34(4):1637-42. PubMed ID: 17175176
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of prosodic emotional intensity on activation of associative auditory cortex.
    Ethofer T; Anders S; Wiethoff S; Erb M; Herbert C; Saur R; Grodd W; Wildgruber D
    Neuroreport; 2006 Feb; 17(3):249-53. PubMed ID: 16462592
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Sound level dependence of the primary auditory cortex: Simultaneous measurement with 61-channel EEG and fMRI.
    Mulert C; Jäger L; Propp S; Karch S; Störmann S; Pogarell O; Möller HJ; Juckel G; Hegerl U
    Neuroimage; 2005 Oct; 28(1):49-58. PubMed ID: 16006148
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Functional magnetic resonance imaging-mediated learning of increased activity in auditory areas.
    Yoo SS; Lee JH; O'Leary H; Lee V; Choo SE; Jolesz FA
    Neuroreport; 2007 Dec; 18(18):1915-20. PubMed ID: 18007186
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Feedforward and recurrent processing in scene segmentation: electroencephalography and functional magnetic resonance imaging.
    Scholte HS; Jolij J; Fahrenfort JJ; Lamme VA
    J Cogn Neurosci; 2008 Nov; 20(11):2097-109. PubMed ID: 18416684
    [TBL] [Abstract][Full Text] [Related]  

  • 15. High binaural coherence determines successful sound localization and increased activity in posterior auditory areas.
    Zimmer U; Macaluso E
    Neuron; 2005 Sep; 47(6):893-905. PubMed ID: 16157283
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Segmental processing in the human auditory dorsal stream.
    Zaehle T; Geiser E; Alter K; Jancke L; Meyer M
    Brain Res; 2008 Jul; 1220():179-90. PubMed ID: 18096139
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An event-related fMRI study of auditory motion perception: no evidence for a specialized cortical system.
    Smith KR; Saberi K; Hickok G
    Brain Res; 2007 May; 1150():94-9. PubMed ID: 17383616
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mapping continuous neuronal activation without an ON-OFF paradigm: initial results of BOLD ceiling fMRI.
    Haller S; Wetzel SG; Radue EW; Bilecen D
    Eur J Neurosci; 2006 Nov; 24(9):2672-8. PubMed ID: 17100855
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Neuroanatomic differences in children with unilateral sensorineural hearing loss detected using functional magnetic resonance imaging.
    Propst EJ; Greinwald JH; Schmithorst V
    Arch Otolaryngol Head Neck Surg; 2010 Jan; 136(1):22-6. PubMed ID: 20083773
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Localisation and characterisation of auditory perception through Functional Magnetic Resonance Imaging.
    Formisano E; Pepino A; Bracale M; Di Salle F; Saulino C; Marciano E
    Technol Health Care; 1998 Sep; 6(2-3):111-23. PubMed ID: 9839857
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.