These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 16951957)

  • 1. Functional asymmetries in the stepping response of the human newborn: a kinematic approach.
    Domellöf E; Rönnqvist L; Hopkins B
    Exp Brain Res; 2007 Mar; 177(3):324-35. PubMed ID: 16951957
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Asymmetrical stabilization and mobilization exploited during static single leg stance and goal directed kicking.
    King AC; Wang Z
    Hum Mov Sci; 2017 Aug; 54():182-190. PubMed ID: 28501732
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Upper and lower body functional asymmetries in the newborn: do they have the same lateral biases?
    Domellöf E; Hopkins B; Rönnqvist L
    Dev Psychobiol; 2005 Mar; 46(2):133-40. PubMed ID: 15732053
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Limb and gender differences in the development of coordination in early infancy.
    Piek JP; Gasson N; Barrett N; Case I
    Hum Mov Sci; 2002 Dec; 21(5-6):621-39. PubMed ID: 12620715
    [TBL] [Abstract][Full Text] [Related]  

  • 5. External postural perturbations induce multiple anticipatory postural adjustments when subjects cannot pre-select their stepping foot.
    Jacobs JV; Horak FB
    Exp Brain Res; 2007 May; 179(1):29-42. PubMed ID: 17091288
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Lower extremity kinematic asymmetry in male and female athletes performing jump-landing tasks.
    Pappas E; Carpes FP
    J Sci Med Sport; 2012 Jan; 15(1):87-92. PubMed ID: 21925949
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Developmental changes in intralimb coordination during spontaneous movements of human infants from 2 to 3 months of age.
    Ohmura Y; Gima H; Watanabe H; Taga G; Kuniyoshi Y
    Exp Brain Res; 2016 Aug; 234(8):2179-88. PubMed ID: 27010721
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Spontaneous leg movements in infants with and without periventricular leukomalacia: effects of unilateral weighting.
    Vaal J; van Soest AJ; Hopkins B; Sie LT
    Behav Brain Res; 2002 Feb; 129(1-2):83-92. PubMed ID: 11809498
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Developmental changes in leg coordination of the chick at embryonic days 9, 11, and 13: uncoupling of ankle movements.
    Sharp AA; Ma E; Bekoff A
    J Neurophysiol; 1999 Nov; 82(5):2406-14. PubMed ID: 10561414
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Interlimb coordination in rhythmic leg movements: spontaneous and training-induced manifestations in human infants.
    Musselman KE; Yang JF
    J Neurophysiol; 2008 Oct; 100(4):2225-34. PubMed ID: 18650307
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Why does infant stepping disappear and can it be stimulated by optic flow?
    Barbu-Roth M; Anderson DI; Streeter RJ; Combrouze M; Park J; Schultz B; Campos JJ; Goffinet F; Provasi J
    Child Dev; 2015; 86(2):441-55. PubMed ID: 25295407
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Tonic central and sensory stimuli facilitate involuntary air-stepping in humans.
    Selionov VA; Ivanenko YP; Solopova IA; Gurfinkel VS
    J Neurophysiol; 2009 Jun; 101(6):2847-58. PubMed ID: 19339461
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Adaptations in interlimb and intralimb coordination to asymmetrical loading in human walking.
    Haddad JM; van Emmerik RE; Whittlesey SN; Hamill J
    Gait Posture; 2006 Jun; 23(4):429-34. PubMed ID: 16099160
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Quantitative assessment of right and left reaching movements in infants: a longitudinal study from 6 to 36 months.
    Rönnqvist L; Domellöf E
    Dev Psychobiol; 2006 Sep; 48(6):444-59. PubMed ID: 16886181
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Sagittal plane kinematic differences between dominant and non-dominant legs in unilateral and bilateral jump landings.
    McPherson AL; Dowling B; Tubbs TG; Paci JM
    Phys Ther Sport; 2016 Nov; 22():54-60. PubMed ID: 27583649
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cerebellar damage produces context-dependent deficits in control of leg dynamics during obstacle avoidance.
    Morton SM; Dordevic GS; Bastian AJ
    Exp Brain Res; 2004 May; 156(2):149-63. PubMed ID: 14758452
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Loading the limb during rhythmic leg movements lengthens the duration of both flexion and extension in human infants.
    Musselman KE; Yang JF
    J Neurophysiol; 2007 Feb; 97(2):1247-57. PubMed ID: 17151226
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Development of spontaneous leg movements in infants with and without periventricular leukomalacia.
    Vaal J; van Soest AJ; Hopkins B; Sie LT; van der Knaap MS
    Exp Brain Res; 2000 Nov; 135(1):94-105. PubMed ID: 11104131
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Contributions to the understanding of gait control.
    Simonsen EB
    Dan Med J; 2014 Apr; 61(4):B4823. PubMed ID: 24814597
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Human side preferences in three different whole-body movement tasks.
    Mohr C; Brugger P; Bracha HS; Landis T; Viaud-Delmon I
    Behav Brain Res; 2004 May; 151(1-2):321-6. PubMed ID: 15084448
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.