These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

272 related articles for article (PubMed ID: 16952016)

  • 21. Over-expression of bacterial gamma-glutamylcysteine synthetase (GSH1) in plastids affects photosynthesis, growth and sulphur metabolism in poplar (Populus tremula x Populus alba) dependent on the resulting gamma-glutamylcysteine and glutathione levels.
    Herschbach C; Rizzini L; Mult S; Hartmann T; Busch F; Peuke AD; Kopriva S; Ensminger I
    Plant Cell Environ; 2010 Jul; 33(7):1138-51. PubMed ID: 20199621
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Efficient and stable transformation of Lactuca sativa L. cv. Cisco (lettuce) plastids.
    Kanamoto H; Yamashita A; Asao H; Okumura S; Takase H; Hattori M; Yokota A; Tomizawa K
    Transgenic Res; 2006 Apr; 15(2):205-17. PubMed ID: 16604461
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Bacillus thuringiensis cry1C expression from the plastid genome of poplar leads to high mortality of leaf-eating caterpillars.
    Wu Y; Xu L; Chang L; Ma M; You L; Jiang C; Li S; Zhang J
    Tree Physiol; 2019 Sep; 39(9):1525-1532. PubMed ID: 31222266
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Plastid transformation for abiotic stress tolerance in plants.
    Bansal KC; Singh AK; Wani SH
    Methods Mol Biol; 2012; 913():351-8. PubMed ID: 22895771
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Precise excision of plastid DNA by the large serine recombinase Bxb1.
    Shao M; Kumar S; Thomson JG
    Plant Biotechnol J; 2014 Apr; 12(3):322-9. PubMed ID: 24261912
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A simple technology for plastid transformation with fragmented DNA.
    Ren K; Xu W; Ren B; Fu J; Jiang C; Zhang J
    J Exp Bot; 2022 Oct; 73(18):6078-6088. PubMed ID: 35689813
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Plastid transformation and its application in metabolic engineering.
    Fuentes P; Armarego-Marriott T; Bock R
    Curr Opin Biotechnol; 2018 Feb; 49():10-15. PubMed ID: 28738208
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Plastid biotechnology: prospects for herbicide and insect resistance, metabolic engineering and molecular farming.
    Bock R
    Curr Opin Biotechnol; 2007 Apr; 18(2):100-6. PubMed ID: 17169550
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Genetic engineering of the chloroplast.
    Heifetz PB
    Biochimie; 2000; 82(6-7):655-66. PubMed ID: 10946114
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Plastid Transformation: How Does it Work? Can it Be Applied to Crops? What Can it Offer?
    Yu Y; Yu PC; Chang WJ; Yu K; Lin CS
    Int J Mol Sci; 2020 Jul; 21(14):. PubMed ID: 32659946
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Persistence of unselected transgenic DNA during a plastid transformation and segregation approach to herbicide resistance.
    Ye GN; Colburn SM; Xu CW; Hajdukiewicz PT; Staub JM
    Plant Physiol; 2003 Sep; 133(1):402-10. PubMed ID: 12970505
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Integration and Expression of gfp in the plastid of Medicago sativa L.
    Xing S; Wei Z; Wang Y; Liu Y; Lin C
    Methods Mol Biol; 2014; 1132():375-87. PubMed ID: 24599868
    [TBL] [Abstract][Full Text] [Related]  

  • 33. High efficiency plastid transformation in potato and regulation of transgene expression in leaves and tubers by alternative 5' and 3' regulatory sequences.
    Valkov VT; Gargano D; Manna C; Formisano G; Dix PJ; Gray JC; Scotti N; Cardi T
    Transgenic Res; 2011 Feb; 20(1):137-51. PubMed ID: 20464632
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Advances of selectable marker genes in plastid genetic engineering.
    He Y; Luo A; Mu LS; Chen Q; Zhang Y; Yeh KW; Tian ZH
    Yi Chuan; 2017 Sep; 39(9):810-827. PubMed ID: 28936979
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Stable transformation of the cotton plastid genome and maternal inheritance of transgenes.
    Kumar S; Dhingra A; Daniell H
    Plant Mol Biol; 2004 Sep; 56(2):203-16. PubMed ID: 15604738
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Optimization of the expression of the HIV fusion inhibitor cyanovirin-N from the tobacco plastid genome.
    Elghabi Z; Karcher D; Zhou F; Ruf S; Bock R
    Plant Biotechnol J; 2011 Jun; 9(5):599-608. PubMed ID: 21309998
    [TBL] [Abstract][Full Text] [Related]  

  • 37. An improved and efficient method of Agrobacterium syringe infiltration for transient transformation and its application in the elucidation of gene function in poplar.
    Zheng L; Yang J; Chen Y; Ding L; Wei J; Wang H
    BMC Plant Biol; 2021 Jan; 21(1):54. PubMed ID: 33478390
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Genetic structure of Populus hybrid zone along the Irtysh River provides insight into plastid-nuclear incompatibility.
    Zeng YF; Zhang JG; Duan AG; Abuduhamiti B
    Sci Rep; 2016 Jun; 6():28043. PubMed ID: 27306416
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Chloroplast genetic engineering via organogenesis or somatic embryogenesis.
    Dhingra A; Daniell H
    Methods Mol Biol; 2006; 323():245-62. PubMed ID: 16739583
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Stable plastid transformation of petunia.
    Avila EM; Day A
    Methods Mol Biol; 2014; 1132():277-93. PubMed ID: 24599860
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.