These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
295 related articles for article (PubMed ID: 16952249)
21. Physical properties of nanobubbles on hydrophobic surfaces in water and aqueous solutions. Zhang XH; Maeda N; Craig VS Langmuir; 2006 May; 22(11):5025-35. PubMed ID: 16700590 [TBL] [Abstract][Full Text] [Related]
22. Nanobubble assisted nanopatterning utilized for ex situ identification of surface nanobubbles. Tarábková H; Janda P J Phys Condens Matter; 2013 May; 25(18):184001. PubMed ID: 23598572 [TBL] [Abstract][Full Text] [Related]
23. Nanobubbles and their role in slip and drag. Maali A; Bhushan B J Phys Condens Matter; 2013 May; 25(18):184003. PubMed ID: 23598711 [TBL] [Abstract][Full Text] [Related]
24. On the shape of surface nanobubbles. Borkent BM; de Beer S; Mugele F; Lohse D Langmuir; 2010 Jan; 26(1):260-8. PubMed ID: 20038172 [TBL] [Abstract][Full Text] [Related]
25. Characterization of nanobubbles on hydrophobic surfaces in water. Yang S; Dammer SM; Bremond N; Zandvliet HJ; Kooij ES; Lohse D Langmuir; 2007 Jun; 23(13):7072-7. PubMed ID: 17503857 [TBL] [Abstract][Full Text] [Related]
26. Self-organization of gold-containing hydrogen-bonded rosette assemblies on graphite surface. Vázquez-Campos S; Péter M; Dong M; Xu S; Xu W; Gersen H; Linderoth TR; Schönherr H; Besenbacher F; Crego-Calama M; Reinhoudt DN Langmuir; 2007 Sep; 23(20):10294-8. PubMed ID: 17722940 [TBL] [Abstract][Full Text] [Related]
27. The morphology and stability of nanoscopic gas states at water/solid interfaces. Zhang L; Wang C; Tai R; Hu J; Fang H Chemphyschem; 2012 Jun; 13(8):2188-95. PubMed ID: 22374797 [TBL] [Abstract][Full Text] [Related]
28. Quartz crystal microbalance study of the interfacial nanobubbles. Zhang XH Phys Chem Chem Phys; 2008 Dec; 10(45):6842-8. PubMed ID: 19015789 [TBL] [Abstract][Full Text] [Related]
29. Metastable nanobubbles at the solid-liquid interface due to contact angle hysteresis. Nishiyama T; Yamada Y; Ikuta T; Takahashi K; Takata Y Langmuir; 2015 Jan; 31(3):982-6. PubMed ID: 25540821 [TBL] [Abstract][Full Text] [Related]
30. Molecular imaging of single cellulose chains aligned on a highly oriented pyrolytic graphite surface. Yokota S; Ueno T; Kitaoka T; Wariishi H Carbohydr Res; 2007 Dec; 342(17):2593-8. PubMed ID: 17889844 [TBL] [Abstract][Full Text] [Related]
31. Graphene Nanobubbles Produced by Water Splitting. An H; Tan BH; Moo JGS; Liu S; Pumera M; Ohl CD Nano Lett; 2017 May; 17(5):2833-2838. PubMed ID: 28394607 [TBL] [Abstract][Full Text] [Related]
32. In-situ high-speed atomic force microscopy observation of dynamic nanobubbles during water electrolysis. Mita M; Matsushima H; Ueda M; Ito H J Colloid Interface Sci; 2022 May; 614():389-395. PubMed ID: 35104709 [TBL] [Abstract][Full Text] [Related]
33. DNA imaged on a HOPG electrode surface by AFM with controlled potential. Oliveira Brett AM; Chiorcea Paquim AM Bioelectrochemistry; 2005 Apr; 66(1-2):117-24. PubMed ID: 15833711 [TBL] [Abstract][Full Text] [Related]
34. Polyhydroxyalkanoate film formation and synthase activity during in vitro and in situ polymerization on hydrophobic surfaces. Sato S; Ono Y; Mochiyama Y; Sivaniah E; Kikkawa Y; Sudesh K; Hiraishi T; Doi Y; Abe H; Tsuge T Biomacromolecules; 2008 Oct; 9(10):2811-8. PubMed ID: 18771315 [TBL] [Abstract][Full Text] [Related]
35. Nanobubble-assisted formation of carbon nanostructures on basal plane highly ordered pyrolytic graphite exposed to aqueous media. Janda P; Frank O; Bastl Z; Klementová M; Tarábková H; Kavan L Nanotechnology; 2010 Mar; 21(9):095707. PubMed ID: 20139490 [TBL] [Abstract][Full Text] [Related]
36. Interaction of the Helium, Hydrogen, Air, Argon, and Nitrogen Bubbles with Graphite Surface in Water. Bartali R; Otyepka M; Pykal M; Lazar P; Micheli V; Gottardi G; Laidani N ACS Appl Mater Interfaces; 2017 May; 9(20):17517-17525. PubMed ID: 28474883 [TBL] [Abstract][Full Text] [Related]
37. Electrically controlled cloud of bulk nanobubbles in water solutions. Postnikov AV; Uvarov IV; Lokhanin MV; Svetovoy VB PLoS One; 2017; 12(7):e0181727. PubMed ID: 28727812 [TBL] [Abstract][Full Text] [Related]
38. A new view of electrochemistry at highly oriented pyrolytic graphite. Patel AN; Collignon MG; O'Connell MA; Hung WO; McKelvey K; Macpherson JV; Unwin PR J Am Chem Soc; 2012 Dec; 134(49):20117-30. PubMed ID: 23145936 [TBL] [Abstract][Full Text] [Related]
39. Morphological imaging of single methylcellulose chains and their thermoresponsive assembly on a highly oriented pyrolytic graphite surface. Yokota S; Ueno T; Kitaoka T; Tatsumi D; Wariishi H Biomacromolecules; 2007 Dec; 8(12):3848-52. PubMed ID: 18004808 [TBL] [Abstract][Full Text] [Related]
40. Nanobubbles give evidence of incomplete wetting at a hydrophobic interface. Simonsen AC; Hansen PL; Klösgen B J Colloid Interface Sci; 2004 May; 273(1):291-9. PubMed ID: 15051463 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]