These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 16952396)

  • 1. Characterizing short-term release and neovascularization potential of multi-protein growth supplement delivered via alginate hollow fiber devices.
    Tilakaratne HK; Hunter SK; Andracki ME; Benda JA; Rodgers VG
    Biomaterials; 2007 Jan; 28(1):89-98. PubMed ID: 16952396
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Release of angiogenic growth factors from cells encapsulated in alginate beads with bioactive glass.
    Keshaw H; Forbes A; Day RM
    Biomaterials; 2005 Jul; 26(19):4171-9. PubMed ID: 15664644
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Calcium alginate beads as a slow-release system for delivering angiogenic molecules in vivo and in vitro.
    Downs EC; Robertson NE; Riss TL; Plunkett ML
    J Cell Physiol; 1992 Aug; 152(2):422-9. PubMed ID: 1379248
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Calcium alginate beads embedded in silk fibroin as 3D dual drug releasing scaffolds.
    Mandal BB; Kundu SC
    Biomaterials; 2009 Oct; 30(28):5170-7. PubMed ID: 19552952
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A comparison of two controlled-release delivery systems for the delivery of amiloride to control angiogenesis.
    Knoll A; Schmidt S; Chapman M; Wiley D; Bulgrin J; Blank J; Kirchner L
    Microvasc Res; 1999 Jul; 58(1):1-9. PubMed ID: 10388598
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The effects of controlled HGF delivery from an affinity-binding alginate biomaterial on angiogenesis and blood perfusion in a hindlimb ischemia model.
    Ruvinov E; Leor J; Cohen S
    Biomaterials; 2010 Jun; 31(16):4573-82. PubMed ID: 20206988
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Floating dosage forms to prolong gastro-retention--the characterisation of calcium alginate beads.
    Stops F; Fell JT; Collett JH; Martini LG
    Int J Pharm; 2008 Feb; 350(1-2):301-11. PubMed ID: 17964096
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Sustained delivery of FGF-1 increases vascular density in comparison to bolus administration.
    Moya ML; Lucas S; Francis-Sedlak M; Liu X; Garfinkel MR; Huang JJ; Cheng MH; Opara EC; Brey EM
    Microvasc Res; 2009 Sep; 78(2):142-7. PubMed ID: 19555698
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A drug delivery system based on alginate microspheres: mass-transport test and in vitro validation.
    Ciofani G; Raffa V; Menciassi A; Micera S; Dario P
    Biomed Microdevices; 2007 Jun; 9(3):395-403. PubMed ID: 17252208
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sustained release of vascular endothelial growth factor from calcium-induced alginate hydrogels reinforced by heparin and chitosan.
    Lee KW; Yoon JJ; Lee JH; Kim SY; Jung HJ; Kim SJ; Joh JW; Lee HH; Lee DS; Lee SK
    Transplant Proc; 2004 Oct; 36(8):2464-5. PubMed ID: 15561282
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Time-dependent alginate/polyvinyl alcohol hydrogels as injectable cell carriers.
    Cho SH; Lim SM; Han DK; Yuk SH; Im GI; Lee JH
    J Biomater Sci Polym Ed; 2009; 20(7-8):863-76. PubMed ID: 19454157
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Magnetic resonance imaging tracking of alginate beads used for drug delivery of growth factors at sites of cardiac damage.
    Gruwel ML; Yang Y; de Gervai P; Sun J; Kupriyanov VV
    Magn Reson Imaging; 2009 Sep; 27(7):970-5. PubMed ID: 19369022
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Alginate-based strategies for therapeutic vascularization.
    Gandhi JK; Opara EC; Brey EM
    Ther Deliv; 2013 Mar; 4(3):327-41. PubMed ID: 23442080
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Action of microparticles of heparin and alginate crosslinked gel when used as injectable artificial matrices to stabilize basic fibroblast growth factor and induce angiogenesis by controlling its release.
    Chinen N; Tanihara M; Nakagawa M; Shinozaki K; Yamamoto E; Mizushima Y; Suzuki Y
    J Biomed Mater Res A; 2003 Oct; 67(1):61-8. PubMed ID: 14517862
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Extended release of high pI proteins from alginate microspheres via a novel encapsulation technique.
    Wells LA; Sheardown H
    Eur J Pharm Biopharm; 2007 Mar; 65(3):329-35. PubMed ID: 17156984
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Alginate/polyethylene glycol blend fibers and their properties for drug controlled release.
    Wang Q; Zhang N; Hu X; Yang J; Du Y
    J Biomed Mater Res A; 2007 Jul; 82(1):122-8. PubMed ID: 17269140
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Alginate hydrogels as biomaterials.
    Augst AD; Kong HJ; Mooney DJ
    Macromol Biosci; 2006 Aug; 6(8):623-33. PubMed ID: 16881042
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Floating drug delivery of a locally acting H2-antagonist: an approach using an in situ gelling liquid formulation.
    Rohith G; Sridhar BK; Srinatha A
    Acta Pharm; 2009 Sep; 59(3):345-54. PubMed ID: 19819830
    [TBL] [Abstract][Full Text] [Related]  

  • 19. VEGF-controlled release within a bone defect from alginate/chitosan/PLA-H scaffolds.
    De la Riva B; Nowak C; Sánchez E; Hernández A; Schulz-Siegmund M; Pec MK; Delgado A; Evora C
    Eur J Pharm Biopharm; 2009 Sep; 73(1):50-8. PubMed ID: 19442724
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Characterization of an alginate-based drug delivery system for neurological applications.
    Ciofani G; Raffa V; Pizzorusso T; Menciassi A; Dario P
    Med Eng Phys; 2008 Sep; 30(7):848-55. PubMed ID: 18042419
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.