BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

183 related articles for article (PubMed ID: 16952838)

  • 21. Effects of ultra high molecular weight poly-gamma-glutamic acid from Bacillus subtilis (chungkookjang) on corneal wound healing.
    Bae SR; Park C; Choi JC; Poo H; Kim CJ; Sung MH
    J Microbiol Biotechnol; 2010 Apr; 20(4):803-8. PubMed ID: 20467257
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Hydrolytic and enzymatic degradation of nanoparticles based on amphiphilic poly(gamma-glutamic acid)-graft-L-phenylalanine copolymers.
    Akagi T; Higashi M; Kaneko T; Kida T; Akashi M
    Biomacromolecules; 2006 Jan; 7(1):297-303. PubMed ID: 16398528
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Effects of cultivation conditions on the production of gamma-PGA with Bacillus subtilis ZJU-7.
    Chen J; Shi F; Zhang B; Zhu F; Cao W; Xu Z; Xu G; Cen P
    Appl Biochem Biotechnol; 2010 Jan; 160(2):370-7. PubMed ID: 18668374
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Stabilization of polyion complex nanoparticles composed of poly(amino acid) using hydrophobic interactions.
    Akagi T; Watanabe K; Kim H; Akashi M
    Langmuir; 2010 Feb; 26(4):2406-13. PubMed ID: 20017513
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Physicochemical properties of cross-linked poly-gamma-glutamic acid and its flocculating activity against kaolin suspension.
    Taniguchi M; Kato K; Shimauchi A; Xu P; Fujita K; Tanaka T; Tarui Y; Hirasawa E
    J Biosci Bioeng; 2005 Feb; 99(2):130-5. PubMed ID: 16233769
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Effects of thermoresponsive coacervation on the hydrolytic degradation of amphipathic poly(gamma-glutamate)s.
    Shimokuri T; Kaneko T; Akashi M
    Macromol Biosci; 2006 Nov; 6(11):942-51. PubMed ID: 17099867
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A novel glutamate transport system in poly(γ-glutamic acid)-producing strain Bacillus subtilis CGMCC 0833.
    Wu Q; Xu H; Zhang D; Ouyang P
    Appl Biochem Biotechnol; 2011 Aug; 164(8):1431-43. PubMed ID: 21437781
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Efficient Biosynthesis of Low-Molecular-Weight Poly-γ-glutamic Acid by Stable Overexpression of PgdS Hydrolase in Bacillus amyloliquefaciens NB.
    Sha Y; Zhang Y; Qiu Y; Xu Z; Li S; Feng X; Wang M; Xu H
    J Agric Food Chem; 2019 Jan; 67(1):282-290. PubMed ID: 30543111
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Knockout of pgdS and ggt genes improves γ-PGA yield in B. subtilis.
    Scoffone V; Dondi D; Biino G; Borghese G; Pasini D; Galizzi A; Calvio C
    Biotechnol Bioeng; 2013 Jul; 110(7):2006-12. PubMed ID: 23335395
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Solution scattering study of the Bacillus subtilis PgdS enzyme involved in poly-γ-glutamic acids degradation.
    Zeng J; Jin Y; Liu Z
    PLoS One; 2018; 13(4):e0195355. PubMed ID: 29608608
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Novel functional biodegradable polymer II: fibroblast growth factor-2 activities of poly(gamma-glutamic acid)-sulfonate.
    Matsusaki M; Serizawa T; Kishida A; Akashi M
    Biomacromolecules; 2005; 6(1):400-7. PubMed ID: 15638545
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Genetically engineered poly-gamma-glutamate producer from Bacillus subtilis ISW1214.
    Ashiuchi M; Shimanouchi K; Horiuchi T; Kamei T; Misono H
    Biosci Biotechnol Biochem; 2006 Jul; 70(7):1794-7. PubMed ID: 16861819
    [TBL] [Abstract][Full Text] [Related]  

  • 33. In vitro enzymatic degradation of nanoparticles prepared from hydrophobically-modified poly(gamma-glutamic acid).
    Akagi T; Higashi M; Kaneko T; Kida T; Akashi M
    Macromol Biosci; 2005 Jul; 5(7):598-602. PubMed ID: 15991216
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Isolation of halotolerant Bacillus licheniformis WX-02 and regulatory effects of sodium chloride on yield and molecular sizes of poly-gamma-glutamic acid.
    Wei X; Ji Z; Chen S
    Appl Biochem Biotechnol; 2010 Mar; 160(5):1332-40. PubMed ID: 19504190
    [TBL] [Abstract][Full Text] [Related]  

  • 35. New biological functions and applications of high-molecular-mass poly-gamma-glutamic acid.
    Poo H; Park C; Kwak MS; Choi DY; Hong SP; Lee IH; Lim YT; Choi YK; Bae SR; Uyama H; Kim CJ; Sung MH
    Chem Biodivers; 2010 Jun; 7(6):1555-62. PubMed ID: 20564573
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Expression of glr gene encoding glutamate racemase in Bacillus licheniformis WX-02 and its regulatory effects on synthesis of poly-γ-glutamic acid.
    Jiang F; Qi G; Ji Z; Zhang S; Liu J; Ma X; Chen S
    Biotechnol Lett; 2011 Sep; 33(9):1837-40. PubMed ID: 21544614
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Genomic characterization and related functional genes of γ- poly glutamic acid producing Bacillus subtilis.
    Zhu J; Wang X; Zhao J; Ji F; Zeng J; Wei Y; Xu L; Dong G; Ma X; Wang C
    BMC Microbiol; 2024 Apr; 24(1):125. PubMed ID: 38622505
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Purification and properties of two isozymes of gamma-glutamyltranspeptidase from Bacillus subtilis TAM-4.
    Abe K; Ito Y; Ohmachi T; Asada Y
    Biosci Biotechnol Biochem; 1997 Oct; 61(10):1621-5. PubMed ID: 9362111
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Effects of temperature and pH on adsorption of basic brown 1 by the bacterial biopolymer poly(gamma-glutamic acid).
    Inbaraj BS; Chiu CP; Ho GH; Yang J; Chen BH
    Bioresour Technol; 2008 Mar; 99(5):1026-35. PubMed ID: 17462883
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Characterization of the Bacillus subtilis ywtD gene, whose product is involved in gamma-polyglutamic acid degradation.
    Suzuki T; Tahara Y
    J Bacteriol; 2003 Apr; 185(7):2379-82. PubMed ID: 12644511
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.