BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 16953039)

  • 1. Dual-energy mammography: simulation studies.
    Bliznakova K; Kolitsi Z; Pallikarakis N
    Phys Med Biol; 2006 Sep; 51(18):4497-515. PubMed ID: 16953039
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Simulation study of a quasi-monochromatic beam for x-ray computed mammotomography.
    McKinley RL; Tornai MP; Samei E; Bradshaw ML
    Med Phys; 2004 Apr; 31(4):800-13. PubMed ID: 15124997
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A dual-energy subtraction technique for microcalcification imaging in digital mammography--a signal-to-noise analysis.
    Lemacks MR; Kappadath SC; Shaw CC; Liu X; Whitman GJ
    Med Phys; 2002 Aug; 29(8):1739-51. PubMed ID: 12201421
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cone-beam volume CT breast imaging: feasibility study.
    Chen B; Ning R
    Med Phys; 2002 May; 29(5):755-70. PubMed ID: 12033572
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Digital magnification mammography. A new technique for improved visualization of microcalcifications in breast cancer diagnosis].
    Reuther G; Hoffmann R; Bier B
    Radiologe; 1993 May; 33(5):260-6. PubMed ID: 8516436
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Full-field digital mammography: dose-dependent detectability of breast lesions and microcalcinosis].
    Obenauer S; Hermann KP; Schorn C; Fischer U; Grabbe E
    Rofo; 2000 Dec; 172(12):1052-6. PubMed ID: 11199434
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Improvement of detectability of microcalcifications by magnification digital mammography].
    Higashida Y; Hatemura M; Yoshida A; Takada T; Takahashi M
    Nihon Igaku Hoshasen Gakkai Zasshi; 1998 Aug; 58(9):473-8. PubMed ID: 9778932
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dual Energy Method for Breast Imaging: A Simulation Study.
    Koukou V; Martini N; Michail C; Sotiropoulou P; Fountzoula C; Kalyvas N; Kandarakis I; Nikiforidis G; Fountos G
    Comput Math Methods Med; 2015; 2015():574238. PubMed ID: 26246848
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Quantification of breast density with dual energy mammography: a simulation study.
    Ducote JL; Molloi S
    Med Phys; 2008 Dec; 35(12):5411-8. PubMed ID: 19175100
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Computer-aided diagnosis in the detection of simulated clustered microcalcifications on mammography].
    Horino K
    Nihon Igaku Hoshasen Gakkai Zasshi; 1998 Jun; 58(7):343-8. PubMed ID: 9711073
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Investigating the feasibility of classifying breast microcalcifications using photon-counting spectral mammography: A simulation study.
    Ghammraoui B; Glick SJ
    Med Phys; 2017 Jun; 44(6):2304-2311. PubMed ID: 28332199
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An adaptive algorithm for the detection of microcalcifications in simulated low-dose mammography.
    Treiber O; Wanninger F; Führ H; Panzer W; Regulla D; Winkler G
    Phys Med Biol; 2003 Feb; 48(4):449-66. PubMed ID: 12630741
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Simulation of mammographic lesions.
    Saunders R; Samei E; Baker J; Delong D
    Acad Radiol; 2006 Jul; 13(7):860-70. PubMed ID: 16777560
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evaluation of the effect of silicone breast inserts on X-ray mammography and breast tomosynthesis images: A Monte Carlo simulation study.
    Daskalaki A; Bliznakova K; Pallikarakis N
    Phys Med; 2016 Feb; 32(2):353-61. PubMed ID: 26818470
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Analyser-based mammography using single-image reconstruction.
    Briedis D; Siu KK; Paganin DM; Pavlov KM; Lewis RA
    Phys Med Biol; 2005 Aug; 50(15):3599-611. PubMed ID: 16030385
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Quantification of breast density with dual energy mammography: an experimental feasibility study.
    Ducote JL; Molloi S
    Med Phys; 2010 Feb; 37(2):793-801. PubMed ID: 20229889
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The influence of anatomical noise on optimal beam quality in mammography.
    Cederström B; Fredenberg E
    Med Phys; 2014 Dec; 41(12):121903. PubMed ID: 25471963
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Color mammography. Image generation and receiver operating characteristic evaluation.
    Boone JM
    Invest Radiol; 1991 Jun; 26(6):521-7. PubMed ID: 1860758
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Digital magnification mammography with matched incident exposure: physical imaging properties and detectability of simulated microcalcifications.
    Tanaka N; Naka K; Fukushima H; Morishita J; Toyofuku F; Ohki M; Higashida Y
    Radiol Phys Technol; 2011 Jul; 4(2):156-63. PubMed ID: 21416317
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Quantification of breast density with spectral mammography based on a scanned multi-slit photon-counting detector: a feasibility study.
    Ding H; Molloi S
    Phys Med Biol; 2012 Aug; 57(15):4719-38. PubMed ID: 22771941
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.