BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

85 related articles for article (PubMed ID: 16953040)

  • 1. A strategy to minimize errors from differential intrafraction organ motion using a single configuration for a 'breathing' multileaf collimator.
    Webb S; Binnie DM
    Phys Med Biol; 2006 Sep; 51(18):4517-31. PubMed ID: 16953040
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Quantification of the fluence error in the motion-compensated dynamic MLC (DMLC) technique for delivering intensity-modulated radiotherapy (IMRT).
    Webb S
    Phys Med Biol; 2006 Apr; 51(7):L17-21. PubMed ID: 16552094
    [TBL] [Abstract][Full Text] [Related]  

  • 3. IMRT delivery to a moving target by dynamic MLC tracking: delivery for targets moving in two dimensions in the beam's eye view.
    McQuaid D; Webb S
    Phys Med Biol; 2006 Oct; 51(19):4819-39. PubMed ID: 16985273
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Tracking 'differential organ motion' with a 'breathing' multileaf collimator: magnitude of problem assessed using 4D CT data and a motion-compensation strategy.
    McClelland JR; Webb S; McQuaid D; Binnie DM; Hawkes DJ
    Phys Med Biol; 2007 Aug; 52(16):4805-26. PubMed ID: 17671337
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A new way of adapting IMRT delivery fraction-by-fraction to cater for variable intrafraction motion.
    Webb S; Bortfeld T
    Phys Med Biol; 2008 Sep; 53(18):5177-91. PubMed ID: 18728307
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Does elastic tissue intrafraction motion with density changes forbid motion-compensated radiotherapy?
    Webb S
    Phys Med Biol; 2006 Mar; 51(6):1449-62. PubMed ID: 16510955
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Four-dimensional IMRT treatment planning using a DMLC motion-tracking algorithm.
    Suh Y; Sawant A; Venkat R; Keall PJ
    Phys Med Biol; 2009 Jun; 54(12):3821-35. PubMed ID: 19478383
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Limitations of a simple technique for movement compensation via movement-modified fluence profiles.
    Webb S
    Phys Med Biol; 2005 Jul; 50(14):N155-61. PubMed ID: 16177503
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The effect on IMRT conformality of elastic tissue movement and a practical suggestion for movement compensation via the modified dynamic multileaf collimator (dMLC) technique.
    Webb S
    Phys Med Biol; 2005 Mar; 50(6):1163-90. PubMed ID: 15798315
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Toward submillimeter accuracy in the management of intrafraction motion: the integration of real-time internal position monitoring and multileaf collimator target tracking.
    Sawant A; Smith RL; Venkat RB; Santanam L; Cho B; Poulsen P; Cattell H; Newell LJ; Parikh P; Keall PJ
    Int J Radiat Oncol Biol Phys; 2009 Jun; 74(2):575-82. PubMed ID: 19327907
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The use of spatial dose gradients and probability density function to evaluate the effect of internal organ motion for prostate IMRT treatment planning.
    Jiang R; Barnett RB; Chow JC; Chen JZ
    Phys Med Biol; 2007 Mar; 52(5):1469-84. PubMed ID: 17301465
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Intrafraction motion compensation by highly constrained iterative deconvolution of organ motion.
    Webb S
    Phys Med Biol; 2007 Jul; 52(14):N309-20. PubMed ID: 17664591
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Experimental measurements and Monte Carlo simulations for dosimetric evaluations of intrafraction motion for gated and ungated intensity modulated arc therapy deliveries.
    Oliver M; Gladwish A; Staruch R; Craig J; Gaede S; Chen J; Wong E
    Phys Med Biol; 2008 Nov; 53(22):6419-36. PubMed ID: 18941277
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Breathing interplay effects during proton beam scanning: simulation and statistical analysis.
    Seco J; Robertson D; Trofimov A; Paganetti H
    Phys Med Biol; 2009 Jul; 54(14):N283-94. PubMed ID: 19550002
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Real-time tracking of tumor motions and deformations along the leaf travel direction with the aid of a synchronized dynamic MLC leaf sequencer.
    Tacke M; Nill S; Oelfke U
    Phys Med Biol; 2007 Nov; 52(22):N505-12. PubMed ID: 17975280
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Integration of real-time internal electromagnetic position monitoring coupled with dynamic multileaf collimator tracking: an intensity-modulated radiation therapy feasibility study.
    Smith RL; Sawant A; Santanam L; Venkat RB; Newell LJ; Cho BC; Poulsen P; Catell H; Keall PJ; Parikh PJ
    Int J Radiat Oncol Biol Phys; 2009 Jul; 74(3):868-75. PubMed ID: 19394159
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Adapting IMRT delivery fraction-by-fraction to cater for variable intrafraction motion.
    Webb S
    Phys Med Biol; 2008 Jan; 53(1):1-21. PubMed ID: 18182684
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Real-time motion-adaptive-optimization (MAO) in TomoTherapy.
    Lu W; Chen M; Ruchala KJ; Chen Q; Langen KM; Kupelian PA; Olivera GH
    Phys Med Biol; 2009 Jul; 54(14):4373-98. PubMed ID: 19550000
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A novel unidirectional intensity map segmentation method for step-and-shoot IMRT delivery with segment shape control.
    Artacho JM; Mellado X; Tobías G; Cruz S; Hernández M
    Phys Med Biol; 2009 Feb; 54(3):569-89. PubMed ID: 19124955
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Motion effects in (intensity modulated) radiation therapy: a review.
    Webb S
    Phys Med Biol; 2006 Jul; 51(13):R403-25. PubMed ID: 16790915
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.