These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

181 related articles for article (PubMed ID: 16953047)

  • 21. Study of guided wave propagation on a plate between two solid bodies with imperfect contact conditions.
    Balvantín AJ; Diosdado-De-la-Peña JA; Limon-Leyva PA; Hernández-Rodríguez E
    Ultrasonics; 2018 Feb; 83():137-145. PubMed ID: 28615109
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Assessment of the fundamental flexural guided wave in cortical bone by an ultrasonic axial-transmission array transducer.
    Kilappa V; Xu K; Moilanen P; Heikkola E; Ta D; Timonen J
    Ultrasound Med Biol; 2013 Jul; 39(7):1223-32. PubMed ID: 23643059
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Axial transmission method for long bone fracture evaluation by ultrasonic guided waves: simulation, phantom and in vitro experiments.
    Xu K; Ta D; He R; Qin YX; Wang W
    Ultrasound Med Biol; 2014 Apr; 40(4):817-27. PubMed ID: 24433749
    [TBL] [Abstract][Full Text] [Related]  

  • 24. An investigation on osteoporosis based on guided wave propagation in multi-layered bone plates.
    Lee MY; Jeyaprakash N; Yang CH
    J Mech Behav Biomed Mater; 2022 Feb; 126():105026. PubMed ID: 34915357
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Attenuation, scattering, and absorption of ultrasound in the skull bone.
    Pinton G; Aubry JF; Bossy E; Muller M; Pernot M; Tanter M
    Med Phys; 2012 Jan; 39(1):299-307. PubMed ID: 22225300
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Numerical simulation of wave propagation in cancellous bone.
    Padilla F; Bossy E; Haiat G; Jenson F; Laugier P
    Ultrasonics; 2006 Dec; 44 Suppl 1():e239-43. PubMed ID: 16859723
    [TBL] [Abstract][Full Text] [Related]  

  • 27. [Ultrasonic wave propagation characteristics of cancellous bone].
    Otani T
    Clin Calcium; 2004 Dec; 14(12):69-75. PubMed ID: 15577177
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Multiridge-based analysis for separating individual modes from multimodal guided wave signals in long bones.
    Xu K; Ta D; Wang W
    IEEE Trans Ultrason Ferroelectr Freq Control; 2010 Nov; 57(11):2480-90. PubMed ID: 21041135
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Acoustoelastic Lamb wave propagation in biaxially stressed plates.
    Gandhi N; Michaels JE; Lee SJ
    J Acoust Soc Am; 2012 Sep; 132(3):1284-93. PubMed ID: 22978856
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Excitation of ultrasonic Lamb waves using a phased array system with two array probes: phantom and in vitro bone studies.
    Nguyen KC; Le LH; Tran TN; Sacchi MD; Lou EH
    Ultrasonics; 2014 Jul; 54(5):1178-85. PubMed ID: 24074751
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The effects of air gap reflections during air-coupled leaky Lamb wave inspection of thin plates.
    Fan Z; Jiang W; Cai M; Wright WM
    Ultrasonics; 2016 Feb; 65():282-95. PubMed ID: 26464105
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Nondestructive testing in human teeth using a leaky Lamb wave device.
    Toda S; Fujita T; Arakawa H; Toda K
    Ultrasonics; 2006 Dec; 44 Suppl 1():e1151-5. PubMed ID: 16797642
    [TBL] [Abstract][Full Text] [Related]  

  • 33. 3D analysis of interaction of Lamb waves with defects in loaded steel plates.
    Kazys R; Mazeika L; Barauskas R; Raisutis R; Cicenas V; Demcenko A
    Ultrasonics; 2006 Dec; 44 Suppl 1():e1127-30. PubMed ID: 16797639
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Three-dimensional simulation of ultrasound propagation through trabecular bone structures measured by synchrotron microtomography.
    Bossy E; Padilla F; Peyrin F; Laugier P
    Phys Med Biol; 2005 Dec; 50(23):5545-56. PubMed ID: 16306651
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Influence of viscoelastic and viscous absorption on ultrasonic wave propagation in cortical bone: Application to axial transmission.
    Naili S; Vu MB; Grimal Q; Talmant M; Desceliers C; Soize C; Haïat G
    J Acoust Soc Am; 2010 Apr; 127(4):2622-34. PubMed ID: 20370043
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Ultrasound propagation in cortical bone: Axial transmission and backscattering simulations.
    Potsika VT; Grivas KN; Gortsas T; Protopappas VC; Polyzos DK; Raum K; Fotiadis DI
    Annu Int Conf IEEE Eng Med Biol Soc; 2015 Aug; 2015():1456-9. PubMed ID: 26736544
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Micro-scale finite element modeling of ultrasound propagation in aluminum trabecular bone-mimicking phantoms: A comparison between numerical simulation and experimental results.
    Vafaeian B; Le LH; Tran TN; El-Rich M; El-Bialy T; Adeeb S
    Ultrasonics; 2016 May; 68():17-28. PubMed ID: 26894840
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Selective generation of Lamb modes by a moving continuous-wave laser.
    Li Z; Lomonosov AM; Ni C; Han B; Shen Z
    Opt Lett; 2018 Jan; 43(1):78-81. PubMed ID: 29328201
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Fatigue evaluation of long cortical bone using ultrasonic guided waves.
    Bai L; Xu K; Li D; Ta D; Le LH; Wang W
    J Biomech; 2018 Aug; 77():83-90. PubMed ID: 29961583
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Time-frequency analysis of the dispersion of Lamb modes.
    Prosser WH; Seale MD; Smith BT
    J Acoust Soc Am; 1999 May; 105(5):2669-76. PubMed ID: 10335617
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.