These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 16953345)

  • 1. Laser manipulation of a smectic liquid-crystal droplet.
    Murazawa N; Juodkazis S; Misawa H
    Eur Phys J E Soft Matter; 2006 Aug; 20(4):435-9. PubMed ID: 16953345
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Laser-induced instabilities in liquid crystal cells with a photosensitive substrate.
    Jánossy I; Fodor-Csorba K; Vajda A; Tóth-Katona T
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Jan; 89(1):012504. PubMed ID: 24580243
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Continuously rotating chiral liquid crystal droplets in a linearly polarized laser trap.
    Yang Y; Brimicombe PD; Roberts NW; Dickinson MR; Osipov M; Gleeson HF
    Opt Express; 2008 May; 16(10):6877-82. PubMed ID: 18545390
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Geometrically unrestricted, topologically constrained control of liquid crystal defects using simultaneous holonomic magnetic and holographic optical manipulation.
    Varney MC; Jenness NJ; Smalyukh II
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Feb; 89(2):022505. PubMed ID: 25353487
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Control of the molecular alignment inside liquid-crystal droplets by use of laser tweezers.
    Murazawa N; Juodkazis S; Matsuo S; Misawa H
    Small; 2005 Jun; 1(6):656-61. PubMed ID: 17193502
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Faceting and stability of smectic A droplets on a solid substrate.
    Oswald P; Lejcek L
    Eur Phys J E Soft Matter; 2006 Apr; 19(4):441-52. PubMed ID: 16612560
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Lasing and waveguiding in smectic A liquid crystal optical fibers.
    Peddireddy K; Jampani VS; Thutupalli S; Herminghaus S; Bahr C; Muševič I
    Opt Express; 2013 Dec; 21(25):30233-42. PubMed ID: 24514602
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Laser trapping chemistry: from polymer assembly to amino acid crystallization.
    Sugiyama T; Yuyama K; Masuhara H
    Acc Chem Res; 2012 Nov; 45(11):1946-54. PubMed ID: 23094993
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Gradient polymer-disposed liquid crystal single layer of large nematic droplets for modulation of laser light.
    Hadjichristov GB; Marinov YG; Petrov AG
    Appl Opt; 2011 Jun; 50(16):2326-33. PubMed ID: 21629309
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Polarization and droplet size effects in the laser-trapping-induced reconfiguration in individual nematic liquid crystal microdroplets.
    Usman A; Chiang WY; Uwada T; Masuhara H
    J Phys Chem B; 2013 Apr; 117(16):4536-40. PubMed ID: 23259728
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Laser-tweezer-controlled solid immersion microscopy in microfluidic systems.
    Birkbeck AL; Zlatanovic S; Esener SC; Ozkan M
    Opt Lett; 2005 Oct; 30(20):2712-4. PubMed ID: 16252750
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Electro-optical switching by liquid-crystal controlled metasurfaces.
    Decker M; Kremers C; Minovich A; Staude I; Miroshnichenko AE; Chigrin D; Neshev DN; Jagadish C; Kivshar YS
    Opt Express; 2013 Apr; 21(7):8879-85. PubMed ID: 23571978
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Direct observation of smectic layers in thermotropic liquid crystals.
    Zhang C; Gao M; Diorio N; Weissflog W; Baumeister U; Sprunt S; Gleeson JT; Jákli A
    Phys Rev Lett; 2012 Sep; 109(10):107802. PubMed ID: 23005329
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Monitoring of laser micromanipulated optically trapped cells by digital holographic microscopy.
    Kemper B; Langehanenberg P; Höink A; von Bally G; Wottowah F; Schinkinger S; Guck J; Käs J; Bredebusch I; Schnekenburger J; Schütze K
    J Biophotonics; 2010 Jul; 3(7):425-31. PubMed ID: 20533430
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Temperature dependence of droplet breakup in 8CB and 5CB liquid crystals.
    Porter D; Savage JR; Cohen I; Spicer P; Caggioni M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Apr; 85(4 Pt 1):041701. PubMed ID: 22680486
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Controlling liquid crystal alignment using photocleavable cyanobiphenyl self-assembled monolayers.
    Prompinit P; Achalkumar AS; Bramble JP; Bushby RJ; Wälti C; Evans SD
    ACS Appl Mater Interfaces; 2010 Dec; 2(12):3686-92. PubMed ID: 21069978
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Trapping probability analysis of a DNA trap using electric and hydrodrag force fields in tapered microchannels.
    Tomizawa Y; Tamiya E; Takamura Y
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 May; 79(5 Pt 1):051902. PubMed ID: 19518475
    [TBL] [Abstract][Full Text] [Related]  

  • 18. All-optical constant-force laser tweezers.
    Nambiar R; Gajraj A; Meiners JC
    Biophys J; 2004 Sep; 87(3):1972-80. PubMed ID: 15345573
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Tunable liquid crystal microlenses with crater polymer prepared by droplet evaporation.
    Hwang SJ; Liu YX; Porter GA
    Opt Express; 2013 Dec; 21(25):30731-8. PubMed ID: 24514649
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Manipulation of liquid droplets using amphiphilic, magnetic one-dimensional photonic crystal chaperones.
    Dorvee JR; Derfus AM; Bhatia SN; Sailor MJ
    Nat Mater; 2004 Dec; 3(12):896-9. PubMed ID: 15531887
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.