These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
176 related articles for article (PubMed ID: 16953574)
21. Pre-steady-state kinetics shows differences in processing of various DNA lesions by Escherichia coli formamidopyrimidine-DNA glycosylase. Koval VV; Kuznetsov NA; Zharkov DO; Ishchenko AA; Douglas KT; Nevinsky GA; Fedorova OS Nucleic Acids Res; 2004; 32(3):926-35. PubMed ID: 14769949 [TBL] [Abstract][Full Text] [Related]
22. High resolution characterization of formamidopyrimidine-DNA glycosylase interaction with its substrate by chemical cross-linking and mass spectrometry using substrate analogs. Rogacheva M; Ishchenko A; Saparbaev M; Kuznetsova S; Ogryzko V J Biol Chem; 2006 Oct; 281(43):32353-65. PubMed ID: 16928690 [TBL] [Abstract][Full Text] [Related]
23. Recognition and excision properties of 8-halogenated-7-deaza-2'-deoxyguanosine as 8-oxo-2'-deoxyguanosine analogues and Fpg and hOGG1 inhibitors. Yin Y; Sasaki S; Taniguchi Y Chembiochem; 2015 May; 16(8):1190-8. PubMed ID: 25900576 [TBL] [Abstract][Full Text] [Related]
24. Residue coevolution reveals functionally important intramolecular interactions in formamidopyrimidine-DNA glycosylase. Endutkin AV; Koptelov SS; Popov AV; Torgasheva NA; Lomzov AA; Tsygankova AR; Skiba TV; Afonnikov DA; Zharkov DO DNA Repair (Amst); 2018 Sep; 69():24-33. PubMed ID: 30032016 [TBL] [Abstract][Full Text] [Related]
25. Substrate discrimination by formamidopyrimidine-DNA glycosylase: distinguishing interactions within the active site. Perlow-Poehnelt RA; Zharkov DO; Grollman AP; Broyde S Biochemistry; 2004 Dec; 43(51):16092-105. PubMed ID: 15610004 [TBL] [Abstract][Full Text] [Related]
27. Plant and fungal Fpg homologs are formamidopyrimidine DNA glycosylases but not 8-oxoguanine DNA glycosylases. Kathe SD; Barrantes-Reynolds R; Jaruga P; Newton MR; Burrows CJ; Bandaru V; Dizdaroglu M; Bond JP; Wallace SS DNA Repair (Amst); 2009 May; 8(5):643-53. PubMed ID: 19217358 [TBL] [Abstract][Full Text] [Related]
28. Surprising repair activities of nonpolar analogs of 8-oxoG expose features of recognition and catalysis by base excision repair glycosylases. McKibbin PL; Kobori A; Taniguchi Y; Kool ET; David SS J Am Chem Soc; 2012 Jan; 134(3):1653-61. PubMed ID: 22175854 [TBL] [Abstract][Full Text] [Related]
30. Requirements for DNA bubble structure for efficient cleavage by helix-two-turn-helix DNA glycosylases. Makasheva KA; Endutkin AV; Zharkov DO Mutagenesis; 2020 Feb; 35(1):119-128. PubMed ID: 31784740 [TBL] [Abstract][Full Text] [Related]
31. Use of crosslinking for revealing the DNA phosphate groups forming specific contacts with the E. coli Fpg protein. Kuznetsova S; Rykhlevskaya A; Taranenko M; Sidorkina O; Oretskaya T; Laval J Biochimie; 2003 May; 85(5):511-9. PubMed ID: 12763310 [TBL] [Abstract][Full Text] [Related]
32. Reversible chemical step and rate-limiting enzyme regeneration in the reaction catalyzed by formamidopyrimidine-DNA glycosylase. Kuznetsov NA; Zharkov DO; Koval VV; Buckle M; Fedorova OS Biochemistry; 2009 Dec; 48(48):11335-43. PubMed ID: 19835417 [TBL] [Abstract][Full Text] [Related]
33. Structural insights into abasic site for Fpg specific binding and catalysis: comparative high-resolution crystallographic studies of Fpg bound to various models of abasic site analogues-containing DNA. Pereira de Jésus K; Serre L; Zelwer C; Castaing B Nucleic Acids Res; 2005; 33(18):5936-44. PubMed ID: 16243784 [TBL] [Abstract][Full Text] [Related]
34. Structural characterization of the Fpg family of DNA glycosylases. Zharkov DO; Shoham G; Grollman AP DNA Repair (Amst); 2003 Aug; 2(8):839-62. PubMed ID: 12893082 [TBL] [Abstract][Full Text] [Related]
35. Energetics of lesion recognition by a DNA repair protein: thermodynamic characterization of formamidopyrimidine-glycosylase (Fpg) interactions with damaged DNA duplexes. Minetti CA; Remeta DP; Zharkov DO; Plum GE; Johnson F; Grollman AP; Breslauer KJ J Mol Biol; 2003 May; 328(5):1047-60. PubMed ID: 12729740 [TBL] [Abstract][Full Text] [Related]
36. Stopped-flow kinetic studies of the interaction between Escherichia coli Fpg protein and DNA substrates. Fedorova OS; Nevinsky GA; Koval VV; Ishchenko AA; Vasilenko NL; Douglas KT Biochemistry; 2002 Feb; 41(5):1520-8. PubMed ID: 11814345 [TBL] [Abstract][Full Text] [Related]
37. Two sequential phosphates 3' adjacent to the 8-oxoguanosine are crucial for lesion excision by E. coli Fpg protein and human 8-oxoguanine-DNA glycosylase. Rogacheva MV; Saparbaev MK; Afanasov IM; Kuznetsova SA Biochimie; 2005 Dec; 87(12):1079-88. PubMed ID: 15979229 [TBL] [Abstract][Full Text] [Related]
38. Quantum mechanical study of the β- and δ-lyase reactions during the base excision repair process: application to FPG. Sowlati-Hashjin S; Wetmore SD Phys Chem Chem Phys; 2015 Oct; 17(38):24696-706. PubMed ID: 26352486 [TBL] [Abstract][Full Text] [Related]
39. Computational investigation of glycosylase and β-lyase activity facilitated by proline: applications to FPG and comparisons to hOgg1. Sowlati-Hashjin S; Wetmore SD J Phys Chem B; 2014 Dec; 118(50):14566-77. PubMed ID: 25415645 [TBL] [Abstract][Full Text] [Related]
40. Radiation affects binding of Fpg repair protein to an abasic site containing DNA. Gillard N; Begusova M; Castaing B; Spotheim-Maurizot M Radiat Res; 2004 Nov; 162(5):566-71. PubMed ID: 15624311 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]