BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

338 related articles for article (PubMed ID: 16954666)

  • 21. Highly comprehensive karyotype analysis by a combination of spectral karyotyping (SKY), microdissection, and reverse painting (SKY-MD).
    Weimer J; Koehler MR; Wiedemann U; Attermeyer P; Jacobsen A; Karow D; Kiechl M; Jonat W; Arnold N
    Chromosome Res; 2001; 9(5):395-402. PubMed ID: 11448041
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Hidden chromosome abnormalities in a primary central nervous system lymphoma detected by multicolor spectral karyotyping.
    Zattara-Cannoni H; Dufour H; Lepidi H; Chatel C; Grisoli F; Vagner-Capodano AM
    Cancer Genet Cytogenet; 1998 Dec; 107(2):98-101. PubMed ID: 9844601
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Molecular cytogenetic characterization of pancreas cancer cell lines reveals high complexity chromosomal alterations.
    Griffin CA; Morsberger L; Hawkins AL; Haddadin M; Patel A; Ried T; Schrock E; Perlman EJ; Jaffee E
    Cytogenet Genome Res; 2007; 118(2-4):148-56. PubMed ID: 18000365
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Molecular cytogenetics of IGH rearrangements in non-Hodgkin B-cell lymphoma.
    Bernicot I; Douet-Guilbert N; Le Bris MJ; Herry A; Morel F; De Braekeleer M
    Cytogenet Genome Res; 2007; 118(2-4):345-52. PubMed ID: 18000389
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Chromosomal translocations are common in natural killer-cell lymphoma/leukemia as shown by spectral karyotyping.
    Wong N; Wong KF; Chan JK; Johnson PJ
    Hum Pathol; 2000 Jun; 31(6):771-4. PubMed ID: 10872675
    [TBL] [Abstract][Full Text] [Related]  

  • 26. An additional segment at 1p36 derived from der(18)t(14;18) in patients with diffuse large B-cell lymphomas transformed from follicular lymphoma.
    Nomura K; Kanda-Akano Y; Shimizu D; Okuda T; Yoshida N; Matsumoto Y; Nishida K; Taki T; Yokota S; Horiike S; Taniwaki M
    Ann Hematol; 2005 Jul; 84(7):474-6. PubMed ID: 15700138
    [TBL] [Abstract][Full Text] [Related]  

  • 27. [Analysis of complex chromosomal aberrations in patients with myelodysplastic syndromes using multiplex fluorescence in situ hybridization combined with whole chromosome painting].
    Chen LJ; Li JY; Xiao B; Zhu Y; Liu Q; Pan JL; Qiu HR; Fan L; Zhang SJ; Lu RN; Xu W; Xue YQ
    Zhonghua Yi Xue Yi Chuan Xue Za Zhi; 2007 Dec; 24(6):635-9. PubMed ID: 18067073
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Combined spectral karyotyping, comparative genomic hybridization, and in vitro apoptyping of a panel of Burkitt's lymphoma-derived B cell lines reveals an unexpected complexity of chromosomal aberrations and a recurrence of specific abnormalities in chemoresistant cell lines.
    Karpova MB; Schoumans J; Blennow E; Ernberg I; Henter JI; Smirnov AF; Nordenskjöld M; Fadeel B
    Int J Oncol; 2006 Mar; 28(3):605-17. PubMed ID: 16465364
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Spectral karyotyping refines cytogenetic diagnostics of constitutional chromosomal abnormalities.
    Schröck E; Veldman T; Padilla-Nash H; Ning Y; Spurbeck J; Jalal S; Shaffer LG; Papenhausen P; Kozma C; Phelan MC; Kjeldsen E; Schonberg SA; O'Brien P; Biesecker L; du Manoir S; Ried T
    Hum Genet; 1997 Dec; 101(3):255-62. PubMed ID: 9439652
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Spectral karyotyping and fluorescence in situ hybridization of murine cells.
    Rudolph C; Schlegelberger B
    Methods Mol Biol; 2009; 506():453-66. PubMed ID: 19110644
    [TBL] [Abstract][Full Text] [Related]  

  • 31. FISH identifies different types of duplications with 12q13-15 as the commonly involved segment in B-cell lymphoproliferative malignancies characterized by partial trisomy 12.
    Dierlamm J; Wlodarska I; Michaux L; Vermeesch JR; Meeus P; Stul M; Criel A; Verhoef G; Thomas J; Delannoy A; Louwagie A; Cassiman JJ; Mecucci C; Hagemeijer A; Van den Berghe H
    Genes Chromosomes Cancer; 1997 Oct; 20(2):155-66. PubMed ID: 9331566
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Multicolour spectral karyotyping of mouse chromosomes.
    Liyanage M; Coleman A; du Manoir S; Veldman T; McCormack S; Dickson RB; Barlow C; Wynshaw-Boris A; Janz S; Wienberg J; Ferguson-Smith MA; Schröck E; Ried T
    Nat Genet; 1996 Nov; 14(3):312-5. PubMed ID: 8896561
    [TBL] [Abstract][Full Text] [Related]  

  • 33. [The clinical application of spectral karyotyping in the analysis of chromosomal abnormalities].
    Guo QS; Zhang YP; Li XT; Han JL
    Zhonghua Yi Xue Yi Chuan Xue Za Zhi; 2007 Feb; 24(1):80-3. PubMed ID: 17285551
    [TBL] [Abstract][Full Text] [Related]  

  • 34. [Application of spectral karyotyping in diagnosis of complex chromosome aberration].
    Pan M; Liao C; Li DZ; Yi CX; Yuan SM
    Zhonghua Yi Xue Yi Chuan Xue Za Zhi; 2007 Aug; 24(4):474-6. PubMed ID: 17680548
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Chromosomal aberrations of multiple myeloma in Chinese patients at diagnosis: a study by combined G-banding and multicolor spectral karyotyping.
    Ng MH; Wong N; Lau TT; Tsang KS; Cheng SH; Chan NP; Tang SH; Lei KI; Leung Y
    Oncol Rep; 2003; 10(3):587-91. PubMed ID: 12684628
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Reassessment of childhood B-lineage lymphoblastic leukemia karyotypes using spectral analysis.
    Elghezal H; Le Guyader G; Radford-Weiss I; Perot C; Van Den Akker J; Eydoux P; Vekemans M; Romana SP
    Genes Chromosomes Cancer; 2001 Apr; 30(4):383-92. PubMed ID: 11241791
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Spectral karyotyping identifies recurrent complex rearrangements of chromosomes 8, 17, and 20 in osteosarcomas.
    Bayani J; Zielenska M; Pandita A; Al-Romaih K; Karaskova J; Harrison K; Bridge JA; Sorensen P; Thorner P; Squire JA
    Genes Chromosomes Cancer; 2003 Jan; 36(1):7-16. PubMed ID: 12461745
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Distinct cytogenetic pathways of advanced-stage neuroblastoma tumors, detected by spectral karyotyping.
    Stark B; Jeison M; Bar-Am I; Glaser-Gabay L; Mardoukh J; Luria D; Feinmesser M; Goshen Y; Stein J; Abramov A; Zaizov R; Yaniv I
    Genes Chromosomes Cancer; 2002 Jul; 34(3):313-24. PubMed ID: 12007192
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Loss of genetic material is more common than gain in acute myeloid leukemia with complex aberrant karyotype: a detailed analysis of 125 cases using conventional chromosome analysis and fluorescence in situ hybridization including 24-color FISH.
    Schoch C; Haferlach T; Bursch S; Gerstner D; Schnittger S; Dugas M; Kern W; Löffler H; Hiddemann W
    Genes Chromosomes Cancer; 2002 Sep; 35(1):20-9. PubMed ID: 12203786
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Analysis of marker or complex chromosomal rearrangements present in pre- and post-natal karyotypes utilizing a combination of G-banding, spectral karyotyping and fluorescence in situ hybridization.
    Heng HH; Ye CJ; Yang F; Ebrahim S; Liu G; Bremer SW; Thomas CM; Ye J; Chen TJ; Tuck-Muller C; Yu JW; Krawetz SA; Johnson A
    Clin Genet; 2003 May; 63(5):358-67. PubMed ID: 12752567
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 17.