These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
376 related articles for article (PubMed ID: 16955105)
41. The Ip6k1 and Ip6k2 Kinases Are Critical for Normal Renal Tubular Function. Haykir B; Moser SO; Pastor-Arroyo EM; Schnitzbauer U; Radvanyi Z; Prucker I; Qiu D; Fiedler D; Saiardi A; Jessen HJ; Hernando N; Wagner CA J Am Soc Nephrol; 2024 Apr; 35(4):441-455. PubMed ID: 38317282 [TBL] [Abstract][Full Text] [Related]
42. Npt2a and Npt2c in mice play distinct and synergistic roles in inorganic phosphate metabolism and skeletal development. Segawa H; Onitsuka A; Furutani J; Kaneko I; Aranami F; Matsumoto N; Tomoe Y; Kuwahata M; Ito M; Matsumoto M; Li M; Amizuka N; Miyamoto K Am J Physiol Renal Physiol; 2009 Sep; 297(3):F671-8. PubMed ID: 19570882 [TBL] [Abstract][Full Text] [Related]
43. Estrogen directly and specifically downregulates NaPi-IIa through the activation of both estrogen receptor isoforms (ERα and ERβ) in rat kidney proximal tubule. Burris D; Webster R; Sheriff S; Faroqui R; Levi M; Hawse JR; Amlal H Am J Physiol Renal Physiol; 2015 Mar; 308(6):F522-34. PubMed ID: 25608964 [TBL] [Abstract][Full Text] [Related]
44. Luminal and contraluminal action of 1-34 and 3-34 PTH peptides on renal type IIa Na-P(i) cotransporter. Traebert M; Völkl H; Biber J; Murer H; Kaissling B Am J Physiol Renal Physiol; 2000 May; 278(5):F792-8. PubMed ID: 10807591 [TBL] [Abstract][Full Text] [Related]
45. Defective coupling of apical PTH receptors to phospholipase C prevents internalization of the Na+-phosphate cotransporter NaPi-IIa in Nherf1-deficient mice. Capuano P; Bacic D; Roos M; Gisler SM; Stange G; Biber J; Kaissling B; Weinman EJ; Shenolikar S; Wagner CA; Murer H Am J Physiol Cell Physiol; 2007 Feb; 292(2):C927-34. PubMed ID: 16987995 [TBL] [Abstract][Full Text] [Related]
46. The phosphate transporter NaPi-IIa determines the rapid renal adaptation to dietary phosphate intake in mouse irrespective of persistently high FGF23 levels. Bourgeois S; Capuano P; Stange G; Mühlemann R; Murer H; Biber J; Wagner CA Pflugers Arch; 2013 Nov; 465(11):1557-72. PubMed ID: 23708836 [TBL] [Abstract][Full Text] [Related]
47. Analysis of opossum kidney NaPi-IIc sodium-dependent phosphate transporter to understand Pi handling in human kidney. Fujii T; Shiozaki Y; Segawa H; Nishiguchi S; Hanazaki A; Noguchi M; Kirino R; Sasaki S; Tanifuji K; Koike M; Yokoyama M; Arima Y; Kaneko I; Tatsumi S; Ito M; Miyamoto KI Clin Exp Nephrol; 2019 Mar; 23(3):313-324. PubMed ID: 30317447 [TBL] [Abstract][Full Text] [Related]
48. The Na+-Pi cotransporter PiT-2 (SLC20A2) is expressed in the apical membrane of rat renal proximal tubules and regulated by dietary Pi. Villa-Bellosta R; Ravera S; Sorribas V; Stange G; Levi M; Murer H; Biber J; Forster IC Am J Physiol Renal Physiol; 2009 Apr; 296(4):F691-9. PubMed ID: 19073637 [TBL] [Abstract][Full Text] [Related]
49. Regulation of Na/Pi transporter in the proximal tubule. Murer H; Hernando N; Forster I; Biber J Annu Rev Physiol; 2003; 65():531-42. PubMed ID: 12517995 [TBL] [Abstract][Full Text] [Related]
54. Ifosfamide metabolites CAA, 4-OH-Ifo and Ifo-mustard reduce apical phosphate transport by changing NaPi-IIa in OK cells. Patzer L; Hernando N; Ziegler U; Beck-Schimmer B; Biber J; Murer H Kidney Int; 2006 Nov; 70(10):1725-34. PubMed ID: 17003823 [TBL] [Abstract][Full Text] [Related]
55. Phosphate handling: new genes, new molecules. Prié D; Torres PU; Friedlander G Horm Res Paediatr; 2011; 76 Suppl 1():71-5. PubMed ID: 21778753 [TBL] [Abstract][Full Text] [Related]
56. The role of an intracellular cysteine stretch in the sorting of the type II Na/phosphate cotransporter. McHaffie GS; Graham C; Kohl B; Strunck-Warnecke U; Werner A Biochim Biophys Acta; 2007 Sep; 1768(9):2099-106. PubMed ID: 17574207 [TBL] [Abstract][Full Text] [Related]
57. Phosphaturic action of fibroblast growth factor 23 in Npt2 null mice. Tomoe Y; Segawa H; Shiozawa K; Kaneko I; Tominaga R; Hanabusa E; Aranami F; Furutani J; Kuwahara S; Tatsumi S; Matsumoto M; Ito M; Miyamoto K Am J Physiol Renal Physiol; 2010 Jun; 298(6):F1341-50. PubMed ID: 20357029 [TBL] [Abstract][Full Text] [Related]
58. New aspect of renal phosphate reabsorption: the type IIc sodium-dependent phosphate transporter. Miyamoto K; Ito M; Tatsumi S; Kuwahata M; Segawa H Am J Nephrol; 2007; 27(5):503-15. PubMed ID: 17687185 [TBL] [Abstract][Full Text] [Related]
59. Relationship between sodium-dependent phosphate transporter (NaPi-IIc) function and cellular vacuole formation in opossum kidney cells. Shiozaki Y; Segawa H; Ohnishi S; Ohi A; Ito M; Kaneko I; Kido S; Tatsumi S; Miyamoto K J Med Invest; 2015; 62(3-4):209-18. PubMed ID: 26399350 [TBL] [Abstract][Full Text] [Related]
60. Interactions of MAP17 with the NaPi-IIa/PDZK1 protein complex in renal proximal tubular cells. Pribanic S; Gisler SM; Bacic D; Madjdpour C; Hernando N; Sorribas V; Gantenbein A; Biber J; Murer H Am J Physiol Renal Physiol; 2003 Oct; 285(4):F784-91. PubMed ID: 12837682 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]