BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

415 related articles for article (PubMed ID: 16955271)

  • 1. Magnetic intensity affects cryptochrome-dependent responses in Arabidopsis thaliana.
    Ahmad M; Galland P; Ritz T; Wiltschko R; Wiltschko W
    Planta; 2007 Feb; 225(3):615-24. PubMed ID: 16955271
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Action spectrum for cryptochrome-dependent hypocotyl growth inhibition in Arabidopsis.
    Ahmad M; Grancher N; Heil M; Black RC; Giovani B; Galland P; Lardemer D
    Plant Physiol; 2002 Jun; 129(2):774-85. PubMed ID: 12068118
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Multiple interactions between cryptochrome and phototropin blue-light signalling pathways in Arabidopsis thaliana.
    Kang B; Grancher N; Koyffmann V; Lardemer D; Burney S; Ahmad M
    Planta; 2008 Apr; 227(5):1091-9. PubMed ID: 18183416
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Magnetic sensitivity mediated by the Arabidopsis blue-light receptor cryptochrome occurs during flavin reoxidation in the dark.
    Pooam M; Arthaut LD; Burdick D; Link J; Martino CF; Ahmad M
    Planta; 2019 Feb; 249(2):319-332. PubMed ID: 30194534
    [TBL] [Abstract][Full Text] [Related]  

  • 5. HY5 is a point of convergence between cryptochrome and cytokinin signalling pathways in Arabidopsis thaliana.
    Vandenbussche F; Habricot Y; Condiff AS; Maldiney R; Van der Straeten D; Ahmad M
    Plant J; 2007 Feb; 49(3):428-41. PubMed ID: 17217468
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cryptochrome photoreceptors cry1 and cry2 antagonistically regulate primary root elongation in Arabidopsis thaliana.
    Canamero RC; Bakrim N; Bouly JP; Garay A; Dudkin EE; Habricot Y; Ahmad M
    Planta; 2006 Oct; 224(5):995-1003. PubMed ID: 16703358
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mutations throughout an Arabidopsis blue-light photoreceptor impair blue-light-responsive anthocyanin accumulation and inhibition of hypocotyl elongation.
    Ahmad M; Lin C; Cashmore AR
    Plant J; 1995 Nov; 8(5):653-8. PubMed ID: 8528277
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cryptochrome blue-light photoreceptors of Arabidopsis implicated in phototropism.
    Ahmad M; Jarillo JA; Smirnova O; Cashmore AR
    Nature; 1998 Apr; 392(6677):720-3. PubMed ID: 9565033
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Phytochromes and cryptochromes regulate the differential growth of Arabidopsis hypocotyls in both a PGP19-dependent and a PGP19-independent manner.
    Nagashima A; Suzuki G; Uehara Y; Saji K; Furukawa T; Koshiba T; Sekimoto M; Fujioka S; Kuroha T; Kojima M; Sakakibara H; Fujisawa N; Okada K; Sakai T
    Plant J; 2008 Feb; 53(3):516-29. PubMed ID: 18086281
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The blue-light receptor cryptochrome 1 shows functional dependence on phytochrome A or phytochrome B in Arabidopsis thaliana.
    Ahmad M; Cashmore AR
    Plant J; 1997 Mar; 11(3):421-7. PubMed ID: 9107032
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Genomic and physiological studies of early cryptochrome 1 action demonstrate roles for auxin and gibberellin in the control of hypocotyl growth by blue light.
    Folta KM; Pontin MA; Karlin-Neumann G; Bottini R; Spalding EP
    Plant J; 2003 Oct; 36(2):203-14. PubMed ID: 14535885
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cryptochrome 1 from Brassica napus is up-regulated by blue light and controls hypocotyl/stem growth and anthocyanin accumulation.
    Chatterjee M; Sharma P; Khurana JP
    Plant Physiol; 2006 May; 141(1):61-74. PubMed ID: 16531484
    [TBL] [Abstract][Full Text] [Related]  

  • 13. HYPERSENSITIVE TO RED AND BLUE 1, a ZZ-type zinc finger protein, regulates phytochrome B-mediated red and cryptochrome-mediated blue light responses.
    Kang X; Chong J; Ni M
    Plant Cell; 2005 Mar; 17(3):822-35. PubMed ID: 15705950
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The Cape Verde Islands allele of cryptochrome 2 enhances cotyledon unfolding in the absence of blue light in Arabidopsis.
    Botto JF; Alonso-Blanco C; Garzarón I; Sánchez RA; Casal JJ
    Plant Physiol; 2003 Dec; 133(4):1547-56. PubMed ID: 14605225
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Unexpected roles for cryptochrome 2 and phototropin revealed by high-resolution analysis of blue light-mediated hypocotyl growth inhibition.
    Folta KM; Spalding EP
    Plant J; 2001 Jun; 26(5):471-8. PubMed ID: 11439133
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hierarchical coupling of phytochromes and cryptochromes reconciles stability and light modulation of Arabidopsis development.
    Mazzella MA; Cerdán PD; Staneloni RJ; Casal JJ
    Development; 2001 Jun; 128(12):2291-9. PubMed ID: 11493548
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Regulation of Arabidopsis cryptochrome 2 by blue-light-dependent phosphorylation.
    Shalitin D; Yang H; Mockler TC; Maymon M; Guo H; Whitelam GC; Lin C
    Nature; 2002 Jun; 417(6890):763-7. PubMed ID: 12066190
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Chimeric proteins between cry1 and cry2 Arabidopsis blue light photoreceptors indicate overlapping functions and varying protein stability.
    Ahmad M; Jarillo JA; Cashmore AR
    Plant Cell; 1998 Feb; 10(2):197-207. PubMed ID: 9490743
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Geomagnetic field impacts on cryptochrome and phytochrome signaling.
    Agliassa C; Narayana R; Christie JM; Maffei ME
    J Photochem Photobiol B; 2018 Aug; 185():32-40. PubMed ID: 29864723
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Functional interaction of phytochrome B and cryptochrome 2.
    Más P; Devlin PF; Panda S; Kay SA
    Nature; 2000 Nov; 408(6809):207-11. PubMed ID: 11089975
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 21.