BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 16955272)

  • 1. Inorganic phosphate uptake in intact vacuoles isolated from suspension-cultured cells of Catharanthus roseus (L.) G. Don under varying Pi status.
    Ohnishi M; Mimura T; Tsujimura T; Mitsuhashi N; Washitani-Nemoto S; Maeshima M; Martinoia E
    Planta; 2007 Feb; 225(3):711-8. PubMed ID: 16955272
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Phosphate uptake across the tonoplast of intact vacuoles isolated from suspension-cultured cells of Catharanthus roseus (L.) G. Don.
    Massonneau A; Martinoia E; Dietz KJ; Mimura T
    Planta; 2000 Aug; 211(3):390-5. PubMed ID: 10987558
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Isolation of Vacuoles from the Leaves of the Medicinal Plant Catharanthus roseus.
    Carqueijeiro I; Noronha H; Bettencourt S; Guedes JG; Duarte P; Gerós H; Sottomayor M
    Methods Mol Biol; 2018; 1789():81-99. PubMed ID: 29916073
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The role of vacuolar malate-transport capacity in crassulacean acid metabolism and nitrate nutrition. Higher malate-transport capacity in ice plant after crassulacean acid metabolism-induction and in tobacco under nitrate nutrition.
    Lüttge U; Pfeifer T; Fischer-Schliebs E; Ratajczak R
    Plant Physiol; 2000 Nov; 124(3):1335-48. PubMed ID: 11080309
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Studies on vacuolar membrane microdomains isolated from Arabidopsis suspension-cultured cells: local distribution of vacuolar membrane proteins.
    Yoshida K; Ohnishi M; Fukao Y; Okazaki Y; Fujiwara M; Song C; Nakanishi Y; Saito K; Shimmen T; Suzaki T; Hayashi F; Fukaki H; Maeshima M; Mimura T
    Plant Cell Physiol; 2013 Oct; 54(10):1571-84. PubMed ID: 23903016
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Phytic acid synthesis and vacuolar accumulation in suspension-cultured cells of Catharanthus roseus induced by high concentration of inorganic phosphate and cations.
    Mitsuhashi N; Ohnishi M; Sekiguchi Y; Kwon YU; Chang YT; Chung SK; Inoue Y; Reid RJ; Yagisawa H; Mimura T
    Plant Physiol; 2005 Jul; 138(3):1607-14. PubMed ID: 15965017
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Regulation of Vacuolar pH of Plant Cells: II. A P NMR Study of the Modifications of Vacuolar pH in Isolated Vacuoles Induced by Proton Pumping and Cation/H Exchanges.
    Guern J; Mathieu Y; Kurkdjian A; Manigault P; Manigault J; Gillet B; Beloeil JC; Lallemand JY
    Plant Physiol; 1989 Jan; 89(1):27-36. PubMed ID: 16666525
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Upregulation of vacuolar H(+)-translocating pyrophosphatase by phosphate starvation of Brassica napus (rapeseed) suspension cell cultures.
    Palma DA; Blumwald E; Plaxton WC
    FEBS Lett; 2000 Dec; 486(2):155-8. PubMed ID: 11113457
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of long-term phosphate starvation on the levels and metabolism of purine nucleotides in suspension-cultured Catharanthus roseus cells.
    Shimano F; Ashihara H
    Phytochemistry; 2006 Jan; 67(2):132-41. PubMed ID: 16321409
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A plant proton-pumping inorganic pyrophosphatase functionally complements the vacuolar ATPase transport activity and confers bafilomycin resistance in yeast.
    Pérez-Castiñeira JR; Hernández A; Drake R; Serrano A
    Biochem J; 2011 Jul; 437(2):269-78. PubMed ID: 21612578
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Involvement of rapid nucleotide synthesis in recovery from phosphate starvation of Catharanthus roseus cells.
    Yin Y; Shimano F; Ashihara H
    J Exp Bot; 2007; 58(5):1025-33. PubMed ID: 17185741
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Presence of a vacuolar H+-pyrophosphatase in promastigotes of Leishmania donovani and its localization to a different compartment from the vacuolar H+-ATPase.
    Rodrigues CO; Scott DA; Docampo R
    Biochem J; 1999 Jun; 340 ( Pt 3)(Pt 3):759-66. PubMed ID: 10359662
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Vacuolar H(+)-translocating pyrophosphatases: a new category of ion translocase.
    Rea PA; Kim Y; Sarafian V; Poole RJ; Davies JM; Sanders D
    Trends Biochem Sci; 1992 Sep; 17(9):348-53. PubMed ID: 1329278
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Lack of Control in Inorganic Phosphate Uptake by Catharanthus roseus (L.) G. Don Cells (Cytoplasmic Inorganic Phosphate Homeostasis Depends on the Tonoplast Inorganic Phosphate Transport System?).
    Sakano K; Yazaki Y; Okihara K; Mimura T; Kiyota S
    Plant Physiol; 1995 May; 108(1):295-302. PubMed ID: 12228474
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Activity of tonoplast proton pumps and Na+/H+ exchange in potato cell cultures is modulated by salt.
    Queirós F; Fontes N; Silva P; Almeida D; Maeshima M; Gerós H; Fidalgo F
    J Exp Bot; 2009; 60(4):1363-74. PubMed ID: 19213810
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Changes in acidity and in proton transport at the tonoplast of grape berries during development.
    Terrier N; Sauvage FX; Ageorges A; Romieu C
    Planta; 2001 May; 213(1):20-8. PubMed ID: 11523652
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Does a proton-pumping ATPase exist in the tonoplast?
    Dupaix A; Hill M; Volfin P; Arrio B
    Biochimie; 1986 Dec; 68(12):1293-8. PubMed ID: 2878687
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An immunocytochemical analysis of the vacuolar proton pump in Dictyostelium discoideum.
    Nolta KV; Padh H; Steck TL
    J Cell Sci; 1993 Jul; 105 ( Pt 3)():849-59. PubMed ID: 8408307
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A phosphorus-31 nuclear magnetic resonance study of phosphate uptake and storage in cultured Catharanthus roseus and Daucus carota plant cells.
    Brodelius P; Vogel HJ
    J Biol Chem; 1985 Mar; 260(6):3556-60. PubMed ID: 3972837
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A vacuolar H(+)-pyrophosphatase differential activation and energy coupling integrate the responses of weeds and crops to drought stress.
    Venancio JB; Catunda MG; Ogliari J; Rima JA; Okorokova-Facanha AL; Okorokov LA; Facanha AR
    Biochim Biophys Acta; 2014 Jun; 1840(6):1987-92. PubMed ID: 24365406
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.