BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

162 related articles for article (PubMed ID: 16955273)

  • 1. A cortical band of gelatinous fibers causes the coiling of redvine tendrils: a model based upon cytochemical and immunocytochemical studies.
    Meloche CG; Knox JP; Vaughn KC
    Planta; 2007 Jan; 225(2):485-98. PubMed ID: 16955273
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Gelatinous fibers are widespread in coiling tendrils and twining vines.
    Bowling AJ; Vaughn KC
    Am J Bot; 2009 Apr; 96(4):719-27. PubMed ID: 21628227
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Tensional stress generation in gelatinous fibres: a review and possible mechanism based on cell-wall structure and composition.
    Mellerowicz EJ; Gorshkova TA
    J Exp Bot; 2012 Jan; 63(2):551-65. PubMed ID: 22090441
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Gelatinous fibers and variant secondary growth related to stem undulation and contraction in a monkey ladder vine, Bauhinia glabra (Fabaceae).
    Fisher JB; Blanco MA
    Am J Bot; 2014 Apr; 101(4):608-16. PubMed ID: 24699542
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Microscopic studies on mature flax fibers embedded in LR white: immunogold localization of cell wall matrix polysaccharides.
    His I; Andème-Onzighi C; Morvan C; Driouich A
    J Histochem Cytochem; 2001 Dec; 49(12):1525-36. PubMed ID: 11724900
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Development of cellulosic secondary walls in flax fibers requires beta-galactosidase.
    Roach MJ; Mokshina NY; Badhan A; Snegireva AV; Hobson N; Deyholos MK; Gorshkova TA
    Plant Physiol; 2011 Jul; 156(3):1351-63. PubMed ID: 21596948
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structural and immunocytochemical characterization of the adhesive tendril of Virginia creeper (Parthenocissus quinquefolia [L.] Planch.).
    Bowling AJ; Vaughn KC
    Protoplasma; 2008; 232(3-4):153-63. PubMed ID: 18421549
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Do woody vines use gelatinous fibers to climb?
    Chery JG; Glos RAE; Anderson CT
    New Phytol; 2022 Jan; 233(1):126-131. PubMed ID: 34160082
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Immunolocalization of hemicelluloses in Arabidopsis thaliana stem. Part I: temporal and spatial distribution of xylans.
    Kim JS; Daniel G
    Planta; 2012 Oct; 236(4):1275-88. PubMed ID: 22711286
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Immunocytochemical characterization of tension wood: Gelatinous fibers contain more than just cellulose.
    Bowling AJ; Vaughn KC
    Am J Bot; 2008 Jun; 95(6):655-63. PubMed ID: 21632390
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Homofusion of Golgi secretory vesicles in flax phloem fibers during formation of the gelatinous secondary cell wall.
    Salnikov VV; Ageeva MV; Gorshkova TA
    Protoplasma; 2008 Nov; 233(3-4):269-73. PubMed ID: 18781373
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Physiological Studies on Pea Tendrils : XIV. Effects of Mechanical Perturbation, Light, and 2-Deoxy-d-Glucose on Callose Deposition and Tendril Coiling.
    Riehl TE; Jaffe MJ
    Plant Physiol; 1984 Jul; 75(3):679-87. PubMed ID: 16663687
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Physicochemical properties of complex rhamnogalacturonan I from gelatinous cell walls of flax fibers.
    Mikshina PV; Idiyatullin BZ; Petrova AA; Shashkov AS; Zuev YF; Gorshkova TA
    Carbohydr Polym; 2015 Mar; 117():853-861. PubMed ID: 25498709
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Xyloglucan for generating tensile stress to bend tree stem.
    Baba K; Park YW; Kaku T; Kaida R; Takeuchi M; Yoshida M; Hosoo Y; Ojio Y; Okuyama T; Taniguchi T; Ohmiya Y; Kondo T; Shani Z; Shoseyov O; Awano T; Serada S; Norioka N; Norioka S; Hayashi T
    Mol Plant; 2009 Sep; 2(5):893-903. PubMed ID: 19825666
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Xylan deposition and lignification in the multi-layered cell walls of phloem fibres in Mallotus japonicus (Euphorbiaceae).
    Nakagawa K; Yoshinaga A; Takabe K
    Tree Physiol; 2014 Sep; 34(9):1018-29. PubMed ID: 25151648
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Distribution of cell-wall polysaccharides and proteins during growth of the hemp hypocotyl.
    Behr M; Faleri C; Hausman JF; Planchon S; Renaut J; Cai G; Guerriero G
    Planta; 2019 Nov; 250(5):1539-1556. PubMed ID: 31352512
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Biogenesis of plant fibers].
    Chernova TE; Gorshkova TA
    Ontogenez; 2007; 38(4):271-84. PubMed ID: 17915536
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Development of gravitropic response: unusual behavior of flax phloem G-fibers.
    Ibragimova NN; Ageeva MV; Gorshkova TA
    Protoplasma; 2017 Mar; 254(2):749-762. PubMed ID: 27263083
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Rearrangement of the Cellulose-Enriched Cell Wall in Flax Phloem Fibers over the Course of the Gravitropic Reaction.
    Ibragimova N; Mokshina N; Ageeva M; Gurjanov O; Mikshina P
    Int J Mol Sci; 2020 Jul; 21(15):. PubMed ID: 32727025
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Force Generation in the Coiling Tendrils of Passiflora caerulea.
    Klimm F; Speck T; Thielen M
    Adv Sci (Weinh); 2023 Oct; 10(28):e2301496. PubMed ID: 37544907
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.