These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 16955354)

  • 1. Supersaturation of dissolved H(2) and CO (2) during fermentative hydrogen production with N(2) sparging.
    Kraemer JT; Bagley DM
    Biotechnol Lett; 2006 Sep; 28(18):1485-91. PubMed ID: 16955354
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hydrogen production of the hyperthermophilic eubacterium, Thermotoga neapolitana under N2 sparging condition.
    Nguyen TA; Han SJ; Kim JP; Kim MS; Sim SJ
    Bioresour Technol; 2010 Jan; 101 Suppl 1():S38-41. PubMed ID: 19361983
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Measurement of H2 consumption and its role in continuous fermentative hydrogen production.
    Kraemer JT; Bagley DM
    Water Sci Technol; 2008; 57(5):681-5. PubMed ID: 18401138
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Improving the yield from fermentative hydrogen production.
    Kraemer JT; Bagley DM
    Biotechnol Lett; 2007 May; 29(5):685-95. PubMed ID: 17279447
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Influence of substrate concentration on the stability and yield of continuous biohydrogen production.
    Kyazze G; Martinez-Perez N; Dinsdale R; Premier GC; Hawkes FR; Guwy AJ; Hawkes DL
    Biotechnol Bioeng; 2006 Apr; 93(5):971-9. PubMed ID: 16353197
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Biohydrogen production from xylose at extreme thermophilic temperatures (70 degrees C) by mixed culture fermentation.
    Kongjan P; Min B; Angelidaki I
    Water Res; 2009 Mar; 43(5):1414-24. PubMed ID: 19147170
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Improvement of fermentative hydrogen production: various approaches.
    Nath K; Das D
    Appl Microbiol Biotechnol; 2004 Oct; 65(5):520-9. PubMed ID: 15378294
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biological hydrogen production from nitrogen-deficient substrates.
    Hafner SD
    Biotechnol Bioeng; 2007 Jun; 97(2):435-7. PubMed ID: 17163516
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Bioreactors configured with distributors and carriers enhance the performance of continuous dark hydrogen fermentation.
    Lo YC; Lee KS; Lin PJ; Chang JS
    Bioresour Technol; 2009 Oct; 100(19):4381-7. PubMed ID: 19427198
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Performance characteristics of a two-stage dark fermentative system producing hydrogen and methane continuously.
    Kyazze G; Dinsdale R; Guwy AJ; Hawkes FR; Premier GC; Hawkes DL
    Biotechnol Bioeng; 2007 Jul; 97(4):759-70. PubMed ID: 17163512
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Significance of acetogenic H2 consumption in dark fermentation and effectiveness of pH.
    Calli B; Zhao J; Nijssen E; Vanbroekhoven K
    Water Sci Technol; 2008; 57(6):809-14. PubMed ID: 18413938
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fermentative H2 production in an upflow anaerobic sludge blanket reactor at various pH values.
    Zhao QB; Yu HQ
    Bioresour Technol; 2008 Mar; 99(5):1353-8. PubMed ID: 17482810
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Apparent hydrogen consumption in acid reactors: observations and implications.
    Dinamarca C; Bakke R
    Water Sci Technol; 2009; 59(7):1441-7. PubMed ID: 19381011
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of ammonia concentration on fermentative hydrogen production by mixed cultures.
    Wang B; Wan W; Wang J
    Bioresour Technol; 2009 Feb; 100(3):1211-3. PubMed ID: 18809322
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Enhancing fermentative hydrogen production from sucrose.
    Perera KR; Nirmalakhandan N
    Bioresour Technol; 2010 Dec; 101(23):9137-43. PubMed ID: 20674339
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Biofuels generation from sweet sorghum: fermentative hydrogen production and anaerobic digestion of the remaining biomass.
    Antonopoulou G; Gavala HN; Skiadas IV; Angelopoulos K; Lyberatos G
    Bioresour Technol; 2008 Jan; 99(1):110-9. PubMed ID: 17257834
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Enhanced photo-H2 production of R. faecalis RLD-53 by separation of CO2 from reaction system.
    Liu BF; Ren NQ; Ding J; Xie GJ; Cao GL
    Bioresour Technol; 2009 Feb; 100(3):1501-4. PubMed ID: 18930393
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The fermentation stoichiometry of Thermotoga neapolitana and influence of temperature, oxygen, and pH on hydrogen production.
    Munro SA; Zinder SH; Walker LP
    Biotechnol Prog; 2009; 25(4):1035-42. PubMed ID: 19551880
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hydrogen production from food wastes and gas post-treatment by CO2 adsorption.
    Redondas V; Gómez X; García S; Pevida C; Rubiera F; Morán A; Pis JJ
    Waste Manag; 2012 Jan; 32(1):60-6. PubMed ID: 21963336
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Biohydrogen production from tequila vinasses using a fixed bed reactor.
    Buitrón G; Prato-Garcia D; Zhang A
    Water Sci Technol; 2014; 70(12):1919-25. PubMed ID: 25521125
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.