These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 16955764)

  • 21. Inhaled nasopharyngeal nitric oxide concentrations during unilateral nostril breathing - A pilot study.
    Stassen THA; Bartley J; White DE
    Respir Physiol Neurobiol; 2021 Nov; 293():103734. PubMed ID: 34214661
    [TBL] [Abstract][Full Text] [Related]  

  • 22. [The influence of nasal flow aerodynamics on the nasal physiology].
    Betlejewski S; Betlejewski A
    Otolaryngol Pol; 2008; 62(3):321-5. PubMed ID: 18652158
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Increased net water loss by oral compared to nasal expiration in healthy subjects.
    Svensson S; Olin AC; Hellgren J
    Rhinology; 2006 Mar; 44(1):74-7. PubMed ID: 16550955
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A numerical simulation of intranasal air temperature during inspiration.
    Lindemann J; Keck T; Wiesmiller K; Sander B; Brambs HJ; Rettinger G; Pless D
    Laryngoscope; 2004 Jun; 114(6):1037-41. PubMed ID: 15179209
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Geometry and airflow dynamics analysis in the nasal cavity during inhalation.
    Inthavong K; Ma J; Shang Y; Dong J; Chetty ASR; Tu J; Frank-Ito D
    Clin Biomech (Bristol, Avon); 2019 Jun; 66():97-106. PubMed ID: 29074148
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The Influence of Sniffing on Airflow and Odorant Deposition in the Canine Nasal Cavity.
    Rygg AD; Van Valkenburgh B; Craven BA
    Chem Senses; 2017 Oct; 42(8):683-698. PubMed ID: 28981825
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The effect of rapid maxillary expansion on pharyngeal airway pressure during inspiration evaluated using computational fluid dynamics.
    Iwasaki T; Takemoto Y; Inada E; Sato H; Suga H; Saitoh I; Kakuno E; Kanomi R; Yamasaki Y
    Int J Pediatr Otorhinolaryngol; 2014 Aug; 78(8):1258-64. PubMed ID: 24865805
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Large-scale CFD simulations of the transitional and turbulent regime for the large human airways during rapid inhalation.
    Calmet H; Gambaruto AM; Bates AJ; Vázquez M; Houzeaux G; Doorly DJ
    Comput Biol Med; 2016 Feb; 69():166-80. PubMed ID: 26773939
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Investigation of inhalation and exhalation flow pattern in a realistic human upper airway model by PIV experiments and CFD simulations.
    Xu X; Wu J; Weng W; Fu M
    Biomech Model Mechanobiol; 2020 Oct; 19(5):1679-1695. PubMed ID: 32026145
    [TBL] [Abstract][Full Text] [Related]  

  • 30. [Three dimensional reconstruction of the nasal cavity structure and numerical simulation of airflow].
    Sun X; Yu S; Liu Y; Zheng Z; Zhang J
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2006 Dec; 23(6):1162-5. PubMed ID: 17228700
    [TBL] [Abstract][Full Text] [Related]  

  • 31. [A numerical simulation of the aerodynamics of the nasal cavity].
    Chometon F; Ebbo D; Gillieron P; Koïfman P; Lecomte F; Sorrel-Dejerine N
    Ann Otolaryngol Chir Cervicofac; 2000 Mar; 117(2):98-104. PubMed ID: 10739999
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Creation of an idealized nasopharynx geometry for accurate computational fluid dynamics simulations of nasal airflow in patient-specific models lacking the nasopharynx anatomy.
    A T Borojeni A; Frank-Ito DO; Kimbell JS; Rhee JS; Garcia GJM
    Int J Numer Method Biomed Eng; 2017 May; 33(5):. PubMed ID: 27525807
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Computer simulation of inspiratory airflow in all regions of the F344 rat nasal passages.
    Kimbell JS; Godo MN; Gross EA; Joyner DR; Richardson RB; Morgan KT
    Toxicol Appl Pharmacol; 1997 Aug; 145(2):388-98. PubMed ID: 9266813
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The Evaluation of Relationship Between Body Mass Index and Nasal Geometry Using Objective and Subjective Methods.
    Demir N; Sanli A; Demir G; Erdogan BA; Yilmaz HB; Paksoy M
    J Craniofac Surg; 2015 Sep; 26(6):1861-4. PubMed ID: 26355974
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Nasal air temperature and airflow during respiration in numerical simulation based on multislice computed tomography scan.
    Lindemann J; Keck T; Wiesmiller K; Sander B; Brambs HJ; Rettinger G; Pless D
    Am J Rhinol; 2006; 20(2):219-23. PubMed ID: 16686393
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Is the mouse nose a miniature version of a rat nose? A computational comparative study.
    Wu Z; Jiang J; Lischka FW; Zhao K
    Comput Methods Programs Biomed; 2024 Sep; 254():108282. PubMed ID: 38878359
    [TBL] [Abstract][Full Text] [Related]  

  • 37. [Experimental study of airflow in the main nasal cavity of the human using a nose model].
    Hess MM; Lamprecht J; Horlitz S
    Laryngorhinootologie; 1992 Sep; 71(9):468-71. PubMed ID: 1388475
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Oronasal distribution of respiratory airflow.
    Niinimaa V; Cole P; Mintz S; Shephard RJ
    Respir Physiol; 1981 Jan; 43(1):69-75. PubMed ID: 7244427
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The fluid dynamics of canine olfaction: unique nasal airflow patterns as an explanation of macrosmia.
    Craven BA; Paterson EG; Settles GS
    J R Soc Interface; 2010 Jun; 7(47):933-43. PubMed ID: 20007171
    [TBL] [Abstract][Full Text] [Related]  

  • 40. [The 3-D reconstruction of the nasal airway to model and analyze the airflow].
    Sun X; Liu Y; Su Y; Yu S; Wang J; Zhang J
    Lin Chuang Er Bi Yan Hou Tou Jing Wai Ke Za Zhi; 2007 Dec; 21(23):1057-9. PubMed ID: 18260369
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.