These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
159 related articles for article (PubMed ID: 16955880)
1. Mineralogy and characterization of arsenic, iron, and lead in a mine waste-derived fertilizer. Williams AG; Scheckel KG; Tolaymat T; Impellitteri CA Environ Sci Technol; 2006 Aug; 40(16):4874-9. PubMed ID: 16955880 [TBL] [Abstract][Full Text] [Related]
2. Ferric minerals and organic matter change arsenic speciation in copper mine tailings. Wang P; Liu Y; Menzies NW; Wehr JB; de Jonge MD; Howard DL; Kopittke PM; Huang L Environ Pollut; 2016 Nov; 218():835-843. PubMed ID: 27524252 [TBL] [Abstract][Full Text] [Related]
3. Arsenic species formed from arsenopyrite weathering along a contamination gradient in Circumneutral river floodplain soils. Mandaliev PN; Mikutta C; Barmettler K; Kotsev T; Kretzschmar R Environ Sci Technol; 2014; 48(1):208-17. PubMed ID: 24283255 [TBL] [Abstract][Full Text] [Related]
4. Geochemistry of mine tailings and behavior of arsenic at Kombat, northeastern Namibia. Sracek O; Mihaljevič M; Kříbek B; Majer V; Filip J; Vaněk A; Penížek V; Ettler V; Mapani B Environ Monit Assess; 2014 Aug; 186(8):4891-903. PubMed ID: 24691736 [TBL] [Abstract][Full Text] [Related]
5. Arsenic speciation and bioaccessibility in arsenic-contaminated soils: sequential extraction and mineralogical investigation. Kim EJ; Yoo JC; Baek K Environ Pollut; 2014 Mar; 186():29-35. PubMed ID: 24361561 [TBL] [Abstract][Full Text] [Related]
6. Geochemistry and pH control of seepage from Ni-Cu rich mine tailings at Selebi Phikwe, Botswana. Sracek O; Kříbek B; Mihaljevič M; Ettler V; Vaněk A; Penížek V; Filip J; Veselovský F; Bagai ZB Environ Monit Assess; 2018 Jul; 190(8):482. PubMed ID: 30039179 [TBL] [Abstract][Full Text] [Related]
7. Fractions and colloidal distribution of arsenic associated with iron oxide minerals in lead-zinc mine-contaminated soils: Comparison of tailings and smelter pollution. Ma J; Lei M; Weng L; Li Y; Chen Y; Islam MS; Zhao J; Chen T Chemosphere; 2019 Jul; 227():614-623. PubMed ID: 31009868 [TBL] [Abstract][Full Text] [Related]
8. Arsenic release from arsenopyrite weathering: insights from sequential extraction and microscopic studies. Basu A; Schreiber ME J Hazard Mater; 2013 Nov; 262():896-904. PubMed ID: 23312782 [TBL] [Abstract][Full Text] [Related]
9. Distribution of inorganic arsenic species in mine tailings of abandoned mines from Korea. Kim MJ; Ahn KH; Jung Y Chemosphere; 2002 Oct; 49(3):307-12. PubMed ID: 12363309 [TBL] [Abstract][Full Text] [Related]
10. The flotation tailings of the former Pb-Zn mine of Touiref (NW Tunisia): mineralogy, mine drainage prediction, base-metal speciation assessment and geochemical modeling. Othmani MA; Souissi F; Bouzahzah H; Bussière B; da Silva EF; Benzaazoua M Environ Sci Pollut Res Int; 2015 Feb; 22(4):2877-90. PubMed ID: 25220771 [TBL] [Abstract][Full Text] [Related]
11. Microbial reductive transformation of iron-rich tailings in a column reactor and its environmental implications to arsenic reactive transport in mining tailings. Ouyang B; Lu X; Li J; Liu H Sci Total Environ; 2019 Jun; 670():1008-1018. PubMed ID: 31018416 [TBL] [Abstract][Full Text] [Related]
12. Arsenopyrite weathering under conditions of simulated calcareous soil. Lara RH; Velázquez LJ; Vazquez-Arenas J; Mallet M; Dossot M; Labastida I; Sosa-Rodríguez FS; Espinosa-Cristóbal LF; Escobedo-Bretado MA; Cruz R Environ Sci Pollut Res Int; 2016 Feb; 23(4):3681-706. PubMed ID: 26498805 [TBL] [Abstract][Full Text] [Related]
13. Arsenic mineralogy and mobility in the arsenic-rich historical mine waste dump. Filippi M; Drahota P; Machovič V; Böhmová V; Mihaljevič M Sci Total Environ; 2015 Dec; 536():713-728. PubMed ID: 26254072 [TBL] [Abstract][Full Text] [Related]
14. Chemical and mineralogical changes of waste and tailings from the Murgul Cu deposit (Artvin, NE Turkey): implications for occurrence of acid mine drainage. Sağlam ES; Akçay M Environ Sci Pollut Res Int; 2016 Apr; 23(7):6584-607. PubMed ID: 26637995 [TBL] [Abstract][Full Text] [Related]
15. Hydrogeochemistry of arsenic pollution in watersheds influenced by gold mining activities in Paracatu (Minas Gerais State, Brazil). Bidone E; Castilhos Z; Cesar R; Santos MC; Sierpe R; Ferreira M Environ Sci Pollut Res Int; 2016 May; 23(9):8546-55. PubMed ID: 26797944 [TBL] [Abstract][Full Text] [Related]
16. Reduction of arsenic content in a complex galena concentrate by Acidithiobacillus ferrooxidans. Makita M; Esperón M; Pereyra B; López A; Orrantia E BMC Biotechnol; 2004 Oct; 4():22. PubMed ID: 15482595 [TBL] [Abstract][Full Text] [Related]
17. Extreme enrichment of arsenic and rare earth elements in acid mine drainage: Case study of Wiśniówka mining area (south-central Poland). Migaszewski ZM; Gałuszka A; Dołęgowska S Environ Pollut; 2019 Jan; 244():898-906. PubMed ID: 30469284 [TBL] [Abstract][Full Text] [Related]
18. Arsenic-rich acid mine water with extreme arsenic concentration: mineralogy, geochemistry, microbiology, and environmental implications. Majzlan J; Plášil J; Škoda R; Gescher J; Kögler F; Rusznyak A; Küsel K; Neu TR; Mangold S; Rothe J Environ Sci Technol; 2014 Dec; 48(23):13685-93. PubMed ID: 25365451 [TBL] [Abstract][Full Text] [Related]
19. Speciation and characterization of arsenic in Ketza River mine tailings using X-ray absorption spectroscopy. Paktunc D; Foster A; Laflamme G Environ Sci Technol; 2003 May; 37(10):2067-74. PubMed ID: 12785509 [TBL] [Abstract][Full Text] [Related]
20. Comparison of arsenic co-precipitation and adsorption by iron minerals and the mechanism of arsenic natural attenuation in a mine stream. Park JH; Han YS; Ahn JS Water Res; 2016 Dec; 106():295-303. PubMed ID: 27728822 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]