BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 16955880)

  • 21. Arsenic species in weathering mine tailings and biogenic solids at the Lava Cap Mine Superfund Site, Nevada City, CA.
    Foster AL; Ashley RP; Rytuba JJ
    Geochem Trans; 2011 Jan; 12(1):1. PubMed ID: 21261983
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Source identification of arsenic contamination in agricultural soils surrounding a closed Cu smelter, South Korea.
    Lee PK; Yu S; Jeong YJ; Seo J; Choi SG; Yoon BY
    Chemosphere; 2019 Feb; 217():183-194. PubMed ID: 30419376
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Arsenic and iron speciation and mobilization during phytostabilization of pyritic mine tailings.
    Hammond CM; Root RA; Maier RM; Chorover J
    Geochim Cosmochim Acta; 2020 Oct; 286():306-323. PubMed ID: 33071297
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Mobilisation and bioavailability of arsenic around mesothermal gold deposits in a semiarid environment, Otago, New Zealand.
    Craw D; Pacheco L
    ScientificWorldJournal; 2002 Feb; 2():308-19. PubMed ID: 12806018
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Study of arsenopyrite weathering products in mine wastes from abandoned tungsten and tin exploitations.
    Murciego A; Alvarez-Ayuso E; Pellitero E; Rodríguez MA; García-Sánchez A; Tamayo A; Rubio J; Rubio F; Rubin J
    J Hazard Mater; 2011 Feb; 186(1):590-601. PubMed ID: 21130565
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Water chemistry impacts on arsenic mobilization from arsenopyrite dissolution and secondary mineral precipitation: implications for managed aquifer recharge.
    Neil CW; Yang YJ; Schupp D; Jun YS
    Environ Sci Technol; 2014 Apr; 48(8):4395-405. PubMed ID: 24621369
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Land-ocean contributions of arsenic through a river-estuary-ria system (SW Europe) under the influence of arsenopyrite deposits in the fluvial basin.
    Costas M; Prego R; Filgueiras AV; Bendicho C
    Sci Total Environ; 2011 Dec; 412-413():304-14. PubMed ID: 22078370
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Leaching characteristics of encapsulated controlled low-strength materials containing arsenic-bearing waste precipitates from refractory gold bioleaching.
    Bouzalakos S; Dudeney AW; Chan BK
    J Environ Manage; 2016 Jul; 176():86-100. PubMed ID: 27039368
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Speciation, mobilization, and bioaccessibility of arsenic in geogenic soil profile from Hong Kong.
    Cui JL; Zhao YP; Li JS; Beiyuan JZ; Tsang DCW; Poon CS; Chan TS; Wang WX; Li XD
    Environ Pollut; 2018 Jan; 232():375-384. PubMed ID: 28966030
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Red mud regulates arsenic fate at acidic pH via regulating arsenopyrite bio-oxidation and S, Fe, Al, Si speciation transformation.
    Zhang DR; Chen HR; Xia JL; Nie ZY; Zhang RY; Schippers A; Shu WS; Qian LX
    Water Res; 2021 Sep; 203():117539. PubMed ID: 34407485
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Arsenic in the soils of Zimapán, Mexico.
    Ongley LK; Sherman L; Armienta A; Concilio A; Salinas CF
    Environ Pollut; 2007 Feb; 145(3):793-9. PubMed ID: 16872728
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Determination of bioavailable soluble arsenic and phosphates in mine tailings by spectrophotometric Sequential Injection Analysis.
    Cordero BE; Cañizares-Macías MP
    Talanta; 2009 May; 78(3):1069-76. PubMed ID: 19269474
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Spatial distribution and speciation of arsenic in peat studied with Microfocused X-ray fluorescence spectrometry and X-ray absorption spectroscopy.
    Langner P; Mikutta C; Suess E; Marcus MA; Kretzschmar R
    Environ Sci Technol; 2013 Sep; 47(17):9706-14. PubMed ID: 23889036
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Mineralogical characterization of arsenic in uranium mine tailings precipitated from iron-rich hydrometallurgical solutions.
    Moldovan BJ; Jiang DT; Hendry MJ
    Environ Sci Technol; 2003 Mar; 37(5):873-9. PubMed ID: 12666915
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Release and fate of As mobilized via bio-oxidation of arsenopyrite in acid mine drainage: Importance of As/Fe/S speciation and As(III) immobilization.
    Chen HR; Zhang DR; Li Q; Nie ZY; Pakostova E
    Water Res; 2022 Sep; 223():118957. PubMed ID: 35970106
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Natural attenuation of arsenic in soils near a highly contaminated historical mine waste dump.
    Drahota P; Filippi M; Ettler V; Rohovec J; Mihaljevič M; Sebek O
    Sci Total Environ; 2012 Jan; 414():546-55. PubMed ID: 22134035
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Arsenic bioaccessibility in gold mine tailings of Delita, Cuba.
    Toujaguez R; Ono FB; Martins V; Cabrera PP; Blanco AV; Bundschuh J; Guilherme LR
    J Hazard Mater; 2013 Nov; 262():1004-13. PubMed ID: 23428178
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Simultaneous suppression of acid mine drainage formation and arsenic release by Carrier-microencapsulation using aluminum-catecholate complexes.
    Park I; Tabelin CB; Seno K; Jeon S; Ito M; Hiroyoshi N
    Chemosphere; 2018 Aug; 205():414-425. PubMed ID: 29704849
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Inorganic arsenic speciation at river basin scales: the Tinto and Odiel rivers in the Iberian Pyrite Belt, SW Spain.
    Sarmiento AM; Nieto JM; Casiot C; Elbaz-Poulichet F; Egal M
    Environ Pollut; 2009 Apr; 157(4):1202-9. PubMed ID: 19135765
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Variations in heavy metal contamination of stream water and groundwater affected by an abandoned lead-zinc mine in Korea.
    Lee JY; Choi JC; Lee KK
    Environ Geochem Health; 2005 Sep; 27(3):237-57. PubMed ID: 16059780
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.