These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
159 related articles for article (PubMed ID: 16955880)
21. Arsenic species in weathering mine tailings and biogenic solids at the Lava Cap Mine Superfund Site, Nevada City, CA. Foster AL; Ashley RP; Rytuba JJ Geochem Trans; 2011 Jan; 12(1):1. PubMed ID: 21261983 [TBL] [Abstract][Full Text] [Related]
22. Source identification of arsenic contamination in agricultural soils surrounding a closed Cu smelter, South Korea. Lee PK; Yu S; Jeong YJ; Seo J; Choi SG; Yoon BY Chemosphere; 2019 Feb; 217():183-194. PubMed ID: 30419376 [TBL] [Abstract][Full Text] [Related]
23. Arsenic and iron speciation and mobilization during phytostabilization of pyritic mine tailings. Hammond CM; Root RA; Maier RM; Chorover J Geochim Cosmochim Acta; 2020 Oct; 286():306-323. PubMed ID: 33071297 [TBL] [Abstract][Full Text] [Related]
24. Mobilisation and bioavailability of arsenic around mesothermal gold deposits in a semiarid environment, Otago, New Zealand. Craw D; Pacheco L ScientificWorldJournal; 2002 Feb; 2():308-19. PubMed ID: 12806018 [TBL] [Abstract][Full Text] [Related]
25. Study of arsenopyrite weathering products in mine wastes from abandoned tungsten and tin exploitations. Murciego A; Alvarez-Ayuso E; Pellitero E; Rodríguez MA; García-Sánchez A; Tamayo A; Rubio J; Rubio F; Rubin J J Hazard Mater; 2011 Feb; 186(1):590-601. PubMed ID: 21130565 [TBL] [Abstract][Full Text] [Related]
26. Water chemistry impacts on arsenic mobilization from arsenopyrite dissolution and secondary mineral precipitation: implications for managed aquifer recharge. Neil CW; Yang YJ; Schupp D; Jun YS Environ Sci Technol; 2014 Apr; 48(8):4395-405. PubMed ID: 24621369 [TBL] [Abstract][Full Text] [Related]
27. Land-ocean contributions of arsenic through a river-estuary-ria system (SW Europe) under the influence of arsenopyrite deposits in the fluvial basin. Costas M; Prego R; Filgueiras AV; Bendicho C Sci Total Environ; 2011 Dec; 412-413():304-14. PubMed ID: 22078370 [TBL] [Abstract][Full Text] [Related]
28. Leaching characteristics of encapsulated controlled low-strength materials containing arsenic-bearing waste precipitates from refractory gold bioleaching. Bouzalakos S; Dudeney AW; Chan BK J Environ Manage; 2016 Jul; 176():86-100. PubMed ID: 27039368 [TBL] [Abstract][Full Text] [Related]
29. Speciation, mobilization, and bioaccessibility of arsenic in geogenic soil profile from Hong Kong. Cui JL; Zhao YP; Li JS; Beiyuan JZ; Tsang DCW; Poon CS; Chan TS; Wang WX; Li XD Environ Pollut; 2018 Jan; 232():375-384. PubMed ID: 28966030 [TBL] [Abstract][Full Text] [Related]
30. Red mud regulates arsenic fate at acidic pH via regulating arsenopyrite bio-oxidation and S, Fe, Al, Si speciation transformation. Zhang DR; Chen HR; Xia JL; Nie ZY; Zhang RY; Schippers A; Shu WS; Qian LX Water Res; 2021 Sep; 203():117539. PubMed ID: 34407485 [TBL] [Abstract][Full Text] [Related]
31. Arsenic in the soils of Zimapán, Mexico. Ongley LK; Sherman L; Armienta A; Concilio A; Salinas CF Environ Pollut; 2007 Feb; 145(3):793-9. PubMed ID: 16872728 [TBL] [Abstract][Full Text] [Related]
32. Determination of bioavailable soluble arsenic and phosphates in mine tailings by spectrophotometric Sequential Injection Analysis. Cordero BE; Cañizares-Macías MP Talanta; 2009 May; 78(3):1069-76. PubMed ID: 19269474 [TBL] [Abstract][Full Text] [Related]
33. Spatial distribution and speciation of arsenic in peat studied with Microfocused X-ray fluorescence spectrometry and X-ray absorption spectroscopy. Langner P; Mikutta C; Suess E; Marcus MA; Kretzschmar R Environ Sci Technol; 2013 Sep; 47(17):9706-14. PubMed ID: 23889036 [TBL] [Abstract][Full Text] [Related]
34. Mineralogical characterization of arsenic in uranium mine tailings precipitated from iron-rich hydrometallurgical solutions. Moldovan BJ; Jiang DT; Hendry MJ Environ Sci Technol; 2003 Mar; 37(5):873-9. PubMed ID: 12666915 [TBL] [Abstract][Full Text] [Related]
35. Release and fate of As mobilized via bio-oxidation of arsenopyrite in acid mine drainage: Importance of As/Fe/S speciation and As(III) immobilization. Chen HR; Zhang DR; Li Q; Nie ZY; Pakostova E Water Res; 2022 Sep; 223():118957. PubMed ID: 35970106 [TBL] [Abstract][Full Text] [Related]
36. Natural attenuation of arsenic in soils near a highly contaminated historical mine waste dump. Drahota P; Filippi M; Ettler V; Rohovec J; Mihaljevič M; Sebek O Sci Total Environ; 2012 Jan; 414():546-55. PubMed ID: 22134035 [TBL] [Abstract][Full Text] [Related]
37. Arsenic bioaccessibility in gold mine tailings of Delita, Cuba. Toujaguez R; Ono FB; Martins V; Cabrera PP; Blanco AV; Bundschuh J; Guilherme LR J Hazard Mater; 2013 Nov; 262():1004-13. PubMed ID: 23428178 [TBL] [Abstract][Full Text] [Related]
38. New insights into the controversy of reactive mineral-controlled arsenopyrite dissolution and arsenic release. Qu H; Ding K; Ao M; Ye Z; Liu T; Hu Z; Cao Y; Morel JL; Baker AJM; Tang Y; Qiu R; Wang S Water Res; 2024 Sep; 262():122051. PubMed ID: 39024668 [TBL] [Abstract][Full Text] [Related]
39. Simultaneous suppression of acid mine drainage formation and arsenic release by Carrier-microencapsulation using aluminum-catecholate complexes. Park I; Tabelin CB; Seno K; Jeon S; Ito M; Hiroyoshi N Chemosphere; 2018 Aug; 205():414-425. PubMed ID: 29704849 [TBL] [Abstract][Full Text] [Related]
40. Inorganic arsenic speciation at river basin scales: the Tinto and Odiel rivers in the Iberian Pyrite Belt, SW Spain. Sarmiento AM; Nieto JM; Casiot C; Elbaz-Poulichet F; Egal M Environ Pollut; 2009 Apr; 157(4):1202-9. PubMed ID: 19135765 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]