These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 16955909)

  • 1. Formation of cyclopentadienyl radical from the gas-phase pyrolysis of hydroquinone, catechol, and phenol.
    Khachatryan L; Adounkpe J; Maskos Z; Dellinger B
    Environ Sci Technol; 2006 Aug; 40(16):5071-6. PubMed ID: 16955909
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Formation of phenoxy and cyclopentadienyl radicals from the gas-phase pyrolysis of phenol.
    Khachatryan L; Adounkpe J; Dellinger B
    J Phys Chem A; 2008 Jan; 112(3):481-7. PubMed ID: 18154322
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Radicals from the gas-phase pyrolysis of catechol. 2. Comparison of the pyrolysis of catechol and hydroquinone.
    Khachatryan L; Asatryan R; McFerrin C; Adounkpe J; Dellinger B
    J Phys Chem A; 2010 Sep; 114(37):10110-6. PubMed ID: 20731470
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Radicals from the gas-phase pyrolysis of catechol: 1. o-Semiquinone and ipso-catechol radicals.
    Khachatryan L; Adounkpe J; Asatryan R; Dellinger B
    J Phys Chem A; 2010 Feb; 114(6):2306-12. PubMed ID: 20104861
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Unimolecular thermal decomposition of phenol and d5-phenol: direct observation of cyclopentadiene formation via cyclohexadienone.
    Scheer AM; Mukarakate C; Robichaud DJ; Nimlos MR; Carstensen HH; Ellison GB
    J Chem Phys; 2012 Jan; 136(4):044309. PubMed ID: 22299873
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Paramagnetic centers in particulate formed from the oxidative pyrolysis of 1-methylnaphthalene in the presence of Fe(III)
    Herring P; Khachatryan L; Lomnicki S; Dellinger B
    Combust Flame; 2013 Dec; 160(12):2996-3003. PubMed ID: 25673882
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mechanisms of molecular product and persistent radical formation from the pyrolysis of hydroquinone.
    Truong H; Lomnicki S; Dellinger B
    Chemosphere; 2008 Mar; 71(1):107-13. PubMed ID: 18023845
    [TBL] [Abstract][Full Text] [Related]  

  • 8. In situ observation of radicals and molecular products during lignin pyrolysis.
    Bährle C; Custodis V; Jeschke G; van Bokhoven JA; Vogel F
    ChemSusChem; 2014 Jul; 7(7):2022-9. PubMed ID: 25044866
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Lithium formate for EPR dosimetry: radiation-induced radical trapping at low temperatures.
    Krivokapić A; Aalbergsjø SG; De Cooman H; Hole EO; Nelson WH; Sagstuen E
    Radiat Res; 2014 May; 181(5):503-11. PubMed ID: 24720752
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Molecular products and radicals from pyrolysis of lignin.
    Kibet J; Khachatryan L; Dellinger B
    Environ Sci Technol; 2012 Dec; 46(23):12994-3001. PubMed ID: 23131040
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of activated carbons modification on porosity, surface structure and phenol adsorption.
    Stavropoulos GG; Samaras P; Sakellaropoulos GP
    J Hazard Mater; 2008 Mar; 151(2-3):414-21. PubMed ID: 17644248
    [TBL] [Abstract][Full Text] [Related]  

  • 12. 13C hyperfine interactions of CO2- in irradiated tooth enamel as studied by EPR.
    Ishchenko SS; Vorona IP; Okulov SM; Baran NP
    Appl Radiat Isot; 2002 Jun; 56(6):815-9. PubMed ID: 12102337
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hydrogen-bonding effects on the properties of phenoxyl radicals. An EPR, kinetic, and computational study.
    Lucarini M; Mugnaini V; Pedulli GF; Guerra M
    J Am Chem Soc; 2003 Jul; 125(27):8318-29. PubMed ID: 12837104
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Radicals from the gas-phase pyrolysis of a lignin model compound:
    Xu MX; Khachatryan L; Baev A; Asatryan R
    RSC Adv; 2016; 6(67):62399-62405. PubMed ID: 28458882
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hydrogen hyperfine splitting constants for phenoxyl radicals by DFT methods: regression analysis unravels hydrogen bonding effects.
    Amorati R; Pedulli GF; Guerra M
    Org Biomol Chem; 2010 Jul; 8(14):3136-41. PubMed ID: 20480076
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Electron paramagnetic resonance study of 3,4,5-trimethoxytetraphenyl porphyrinoxovanadium (IV) complex.
    Sharma S; Kumar A; Chand P; Sharma BK; Sarkar S
    Spectrochim Acta A Mol Biomol Spectrosc; 2006 Mar; 63(3):556-64. PubMed ID: 16024276
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Synergic effect of silver nanoparticles and carbon nanotubes on the simultaneous voltammetric determination of hydroquinone, catechol, bisphenol A and phenol.
    Goulart LA; Gonçalves R; Correa AA; Pereira EC; Mascaro LH
    Mikrochim Acta; 2017 Dec; 185(1):12. PubMed ID: 29594601
    [TBL] [Abstract][Full Text] [Related]  

  • 18. EPR and TREPR spectroscopic studies of antioxidant sesamolyl and related phenoxyl radicals.
    Nakagawa K; Tero-Kubota S; Ikegami Y; Tsuchihashi N
    Photochem Photobiol; 1994 Sep; 60(3):199-204. PubMed ID: 7972369
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of copper oxide concentration on the formation and persistency of environmentally persistent free radicals (EPFRs) in particulates.
    Kiruri LW; Khachatryan L; Dellinger B; Lomnicki S
    Environ Sci Technol; 2014 Feb; 48(4):2212-7. PubMed ID: 24437381
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structural and energetic aspects of the protonation of phenol, catechol, resorcinol, and hydroquinone.
    Bouchoux G; Defaye D; McMahon T; Likholyot A; Mó O; Yáñez M
    Chemistry; 2002 Jul; 8(13):2900-9. PubMed ID: 12489218
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.