These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 16956247)

  • 21. Ab initio study of low-lying electronic states of SnCl2+.
    Lee EP; Dyke JM; Chow WK; Mok DK; Chau FT
    J Phys Chem A; 2007 Dec; 111(50):13193-9. PubMed ID: 18034464
    [TBL] [Abstract][Full Text] [Related]  

  • 22. F-loss and H-loss dissociations in low-lying electronic states of the CH3F+ ion studied using multiconfiguration second-order perturbation theory.
    Xi HW; Huang MB; Chen BZ; Li WZ
    J Phys Chem A; 2005 Oct; 109(40):9149-55. PubMed ID: 16332024
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Electronic excited states and electronic spectra of biphenyl: a study using many-body wavefunction methods and density functional theories.
    Fukuda R; Ehara M
    Phys Chem Chem Phys; 2013 Oct; 15(40):17426-34. PubMed ID: 24022338
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A theoretical study of the low-lying electronic states of the AlCCH radical and its ions.
    Liu YJ; Zhao ZX; Song MX; Zhang HX; Sun CC
    J Phys Chem A; 2010 Apr; 114(15):5035-40. PubMed ID: 20337482
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A CASSCF and CASPT2 study on the excited states of s-trans-formaldazine.
    Luo C; Duan XM; Liu JY; Li ZS
    J Phys Chem A; 2008 Sep; 112(38):8979-85. PubMed ID: 18759422
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Theoretical study of the electronic excited states of tetracyanoethylene and its radical anion.
    Milián B; Pou-Amérigo R; Merchán M; Ortí E
    Chemphyschem; 2005 Mar; 6(3):503-10. PubMed ID: 15799476
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Cl-loss and H-loss dissociations in low-lying electronic states of the CH3Cl+ ion studied using multiconfiguration second-order perturbation theory.
    Xi HW; Huang MB; Chen BZ; Li WZ
    J Phys Chem A; 2005 May; 109(19):4381-7. PubMed ID: 16833769
    [TBL] [Abstract][Full Text] [Related]  

  • 28. New relativistic ANO basis sets for transition metal atoms.
    Roos BO; Lindh R; Malmqvist PA; Veryazov V; Widmark PO
    J Phys Chem A; 2005 Jul; 109(29):6575-9. PubMed ID: 16834004
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Theoretical investigation of anthracene-9,10-endoperoxide vertical singlet and triplet excitation spectra.
    Corral I; González L
    J Comput Chem; 2008 Sep; 29(12):1982-91. PubMed ID: 18366030
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The low-lying excited states of 2,2'-bithiophene: a theoretical analysis.
    Rubio M; Merchán M; Pou-Amérigo R; Ortí E
    Chemphyschem; 2003 Dec; 4(12):1308-15. PubMed ID: 14714378
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Excited states of the water molecule: analysis of the valence and Rydberg character.
    Rubio M; Serrano-Andrés L; Merchán M
    J Chem Phys; 2008 Mar; 128(10):104305. PubMed ID: 18345886
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Dissociation of the OCS+ ion in low-lying electronic states studied using multiconfiguration second-order perturbation theory.
    Chen BZ; Chang HB; Huang MB
    J Chem Phys; 2006 Aug; 125(5):054310. PubMed ID: 16942216
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Al4- cluster anion: electronic structure, excited states, and electron detachment.
    Sommerfeld T
    J Chem Phys; 2010 Mar; 132(12):124305. PubMed ID: 20370121
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Low-lying quartet electronic states of nitrogen dioxide.
    Bera PP; Yamaguchi Y; Schaefer HF
    J Chem Phys; 2007 Nov; 127(17):174303. PubMed ID: 17994814
    [TBL] [Abstract][Full Text] [Related]  

  • 35. New relativistic atomic natural orbital basis sets for lanthanide atoms with applications to the Ce diatom and LuF3.
    Roos BO; Lindh R; Malmqvist PA; Veryazov V; Widmark PO; Borin AC
    J Phys Chem A; 2008 Nov; 112(45):11431-5. PubMed ID: 18928264
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The restricted active space followed by second-order perturbation theory method: theory and application to the study of CuO2 and Cu2O2 systems.
    Malmqvist PA; Pierloot K; Shahi AR; Cramer CJ; Gagliardi L
    J Chem Phys; 2008 May; 128(20):204109. PubMed ID: 18513012
    [TBL] [Abstract][Full Text] [Related]  

  • 37. MS-CASPT2 calculation of excess electron transfer in stacked DNA nucleobases.
    Blancafort L; Voityuk AA
    J Phys Chem A; 2007 May; 111(21):4714-9. PubMed ID: 17487989
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Assessing the performance of density functional theory for the electronic structure of metal-salens: the d6-metals.
    Takatani T; Sears JS; Sherrill CD
    J Phys Chem A; 2009 Aug; 113(32):9231-6. PubMed ID: 19621915
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Theoretical study on HBO+ and HOB+ cations using multiconfiguration second-order perturbation theory.
    Li WZ; Cheng JB; Li QZ; Gong BA; Sun JZ
    J Comput Chem; 2010 May; 31(7):1397-401. PubMed ID: 19847784
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Modeling positrons in molecular electronic structure calculations with the nuclear-electronic orbital method.
    Adamson PE; Duan XF; Burggraf LW; Pak MV; Swalina C; Hammes-Schiffer S
    J Phys Chem A; 2008 Feb; 112(6):1346-51. PubMed ID: 18215029
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.