These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
177 related articles for article (PubMed ID: 16956275)
1. First-principles study on proton dissociation properties of fluorocarbon- and hydrocarbon-based membranes in low humidity conditions. Koyama M; Bada K; Sasaki K; Tsuboi H; Endou A; Kubo M; Del Carpio CA; Broclawik E; Miyamoto A J Phys Chem B; 2006 Sep; 110(36):17872-7. PubMed ID: 16956275 [TBL] [Abstract][Full Text] [Related]
2. On the consequences of side chain flexibility and backbone conformation on hydration and proton dissociation in perfluorosulfonic acid membranes. Paddison SJ; Elliott JA Phys Chem Chem Phys; 2006 May; 8(18):2193-203. PubMed ID: 16751878 [TBL] [Abstract][Full Text] [Related]
3. Ab initio study of hydration and proton dissociation in ionomer membranes. Idupulapati N; Devanathan R; Dupuis M J Phys Chem A; 2010 Jul; 114(25):6904-12. PubMed ID: 20524678 [TBL] [Abstract][Full Text] [Related]
4. Molecular modeling of the short-side-chain perfluorosulfonic acid membrane. Paddison SJ; Elliott JA J Phys Chem A; 2005 Aug; 109(33):7583-93. PubMed ID: 16834128 [TBL] [Abstract][Full Text] [Related]
5. About the choice of the protogenic group in polymer electrolyte membranes: Ab initio modelling of sulfonic acid, phosphonic acid, and imidazole functionalized alkanes. Paddison SJ; Kreuer KD; Maier J Phys Chem Chem Phys; 2006 Oct; 8(39):4530-42. PubMed ID: 17047750 [TBL] [Abstract][Full Text] [Related]
6. A comparative ab initio study of the primary hydration and proton dissociation of various imide and sulfonic acid ionomers. Clark JK; Paddison SJ; Eikerling M; Dupuis M; Zawodzinski TA J Phys Chem A; 2012 Feb; 116(7):1801-13. PubMed ID: 22276670 [TBL] [Abstract][Full Text] [Related]
7. Tuned polymer electrolyte membranes based on aromatic polyethers for fuel cell applications. Miyatake K; Chikashige Y; Higuchi E; Watanabe M J Am Chem Soc; 2007 Apr; 129(13):3879-87. PubMed ID: 17352469 [TBL] [Abstract][Full Text] [Related]
8. Excited-state proton transfer through water bridges and structure of hydrogen-bonded complexes in 1H-pyrrolo[3,2-h]quinoline: adiabatic time-dependent density functional theory study. Kyrychenko A; Waluk J J Phys Chem A; 2006 Nov; 110(43):11958-67. PubMed ID: 17064184 [TBL] [Abstract][Full Text] [Related]
9. Hydration and proton transfer in highly sulfonated poly(phenylene sulfone) ionomers: an ab initio study. Wang C; Paddison SJ J Phys Chem A; 2013 Jan; 117(3):650-60. PubMed ID: 23286778 [TBL] [Abstract][Full Text] [Related]
10. Aggregation behavior of fluorocarbon and hydrocarbon cationic surfactant mixtures: a study of 1H NMR and 19F NMR. Dong S; Xu G; Hoffmann H J Phys Chem B; 2008 Aug; 112(31):9371-8. PubMed ID: 18613719 [TBL] [Abstract][Full Text] [Related]
11. Hydrogen transfer and hydration properties of H(n)PO4(3-n) (n=0-3) in water studied by first principles molecular dynamics simulations. Tang E; Di Tommaso D; de Leeuw NH J Chem Phys; 2009 Jun; 130(23):234502. PubMed ID: 19548734 [TBL] [Abstract][Full Text] [Related]
12. An ab initio modeling study on a modeled hydrated polymer electrolyte membrane, sulfonated polyethersulfone (SPES). Choe YK; Tsuchida E; Ikeshoji T; Ohira A; Kidena K J Phys Chem B; 2010 Feb; 114(7):2411-21. PubMed ID: 20121174 [TBL] [Abstract][Full Text] [Related]
13. Nature of proton dynamics in a polymer electrolyte membrane, nafion: a first-principles molecular dynamics study. Choe YK; Tsuchida E; Ikeshoji T; Yamakawa S; Hyodo SA Phys Chem Chem Phys; 2009 May; 11(20):3892-9. PubMed ID: 19440617 [TBL] [Abstract][Full Text] [Related]
14. Effect of the nature of the metal atom on hydrogen bonding and proton transfer to [Cp*MH3(dppe)]: tungsten versus molybdenum. Belkova NV; Besora M; Baya M; Dub PA; Epstein LM; Lledós A; Poli R; Revin PO; Shubina ES Chemistry; 2008; 14(32):9921-34. PubMed ID: 18810747 [TBL] [Abstract][Full Text] [Related]
15. Proton transfer reactions and dynamics of sulfonic acid group in Nafion®. Phonyiem M; Chaiwongwattana S; Lao-ngam C; Sagarik K Phys Chem Chem Phys; 2011 Jun; 13(23):10923-39. PubMed ID: 21584294 [TBL] [Abstract][Full Text] [Related]
16. Atomistic simulations of perfluoro phosphonic and phosphinic acid membranes and comparisons to Nafion. Idupulapati N; Devanathan R; Dupuis M J Phys Chem B; 2011 Mar; 115(12):2959-69. PubMed ID: 21391542 [TBL] [Abstract][Full Text] [Related]
17. Perfluorobutane sulfonic acid hydration and interactions with O2 adsorbed on Pt3. Yan L; Balbuena PB; Seminario JM J Phys Chem A; 2006 Apr; 110(13):4574-81. PubMed ID: 16571065 [TBL] [Abstract][Full Text] [Related]
18. The dependence of the electrochemical properties of perfluorosulfonic acid membrane/water systems on repeat unit structure. Kim YG; Bae YC J Chem Phys; 2009 Jul; 131(1):014901. PubMed ID: 19586118 [TBL] [Abstract][Full Text] [Related]
19. Acid-functionalized polysilsesquioxane-nafion composite membranes with high proton conductivity and enhanced selectivity. Xu K; Chanthad C; Gadinski MR; Hickner MA; Wang Q ACS Appl Mater Interfaces; 2009 Nov; 1(11):2573-9. PubMed ID: 20356129 [TBL] [Abstract][Full Text] [Related]
20. Alcohol and proton transport in perfluorinated ionomer membranes for fuel cells. Saito M; Tsuzuki S; Hayamizu K; Okada T J Phys Chem B; 2006 Dec; 110(48):24410-7. PubMed ID: 17134195 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]