These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
220 related articles for article (PubMed ID: 16956368)
41. Functional comparison of the NAD binding cleft of ADP-ribosylating toxins. Dolan KM; Lindenmayer G; Olson JC Biochemistry; 2000 Jul; 39(28):8266-75. PubMed ID: 10889035 [TBL] [Abstract][Full Text] [Related]
42. Cholera- and anthrax-like toxins are among several new ADP-ribosyltransferases. Fieldhouse RJ; Turgeon Z; White D; Merrill AR PLoS Comput Biol; 2010 Dec; 6(12):e1001029. PubMed ID: 21170356 [TBL] [Abstract][Full Text] [Related]
43. Novel bacterial ADP-ribosylating toxins: structure and function. Simon NC; Aktories K; Barbieri JT Nat Rev Microbiol; 2014 Sep; 12(9):599-611. PubMed ID: 25023120 [TBL] [Abstract][Full Text] [Related]
44. Molecular mechanism of ADP-ribose hydrolysis by human NUDT5 from structural and kinetic studies. Zha M; Guo Q; Zhang Y; Yu B; Ou Y; Zhong C; Ding J J Mol Biol; 2008 Jun; 379(3):568-78. PubMed ID: 18462755 [TBL] [Abstract][Full Text] [Related]
45. Purification and molecular cloning of a DNA ADP-ribosylating protein, CARP-1, from the edible clam Meretrix lamarckii. Nakano T; Matsushima-Hibiya Y; Yamamoto M; Enomoto S; Matsumoto Y; Totsuka Y; Watanabe M; Sugimura T; Wakabayashi K Proc Natl Acad Sci U S A; 2006 Sep; 103(37):13652-7. PubMed ID: 16945908 [TBL] [Abstract][Full Text] [Related]
46. Bacterial ADP-ribosylating toxins: molecular structures and signal transducing functions. Kato I Microbiol Immunol; 1991; 35(5):349-59. PubMed ID: 1943847 [TBL] [Abstract][Full Text] [Related]
47. A steric antagonism of actin polymerization by a salmonella virulence protein. Margarit SM; Davidson W; Frego L; Stebbins CE Structure; 2006 Aug; 14(8):1219-29. PubMed ID: 16905096 [TBL] [Abstract][Full Text] [Related]
48. Analysis of Rho-GTPase mimicry by a family of bacterial type III effector proteins. Alto NM; Dixon JE Methods Enzymol; 2008; 439():131-43. PubMed ID: 18374161 [TBL] [Abstract][Full Text] [Related]
49. ADP-ribosyltransferases: plastic tools for inactivating protein and small molecular weight targets. Koch-Nolte F; Reche P; Haag F; Bazan F J Biotechnol; 2001 Dec; 92(2):81-7. PubMed ID: 11640979 [TBL] [Abstract][Full Text] [Related]
50. The crystal structure of C3stau2 from Staphylococcus aureus and its complex with NAD. Evans HR; Sutton JM; Holloway DE; Ayriss J; Shone CC; Acharya KR J Biol Chem; 2003 Nov; 278(46):45924-30. PubMed ID: 12933793 [TBL] [Abstract][Full Text] [Related]
52. Bifunctional Immunity Proteins Protect Bacteria against FtsZ-Targeting ADP-Ribosylating Toxins. Ting SY; Bosch DE; Mangiameli SM; Radey MC; Huang S; Park YJ; Kelly KA; Filip SK; Goo YA; Eng JK; Allaire M; Veesler D; Wiggins PA; Peterson SB; Mougous JD Cell; 2018 Nov; 175(5):1380-1392.e14. PubMed ID: 30343895 [TBL] [Abstract][Full Text] [Related]
53. The Structure of the Toxin and Type Six Secretion System Substrate Tse2 in Complex with Its Immunity Protein. Robb CS; Robb M; Nano FE; Boraston AB Structure; 2016 Feb; 24(2):277-84. PubMed ID: 26749446 [TBL] [Abstract][Full Text] [Related]
54. The ADP-ribosylating thermozyme from Sulfolobus solfataricus is a DING protein. Di Maro A; De Maio A; Castellano S; Parente A; Farina B; Faraone-Mennella MR Biol Chem; 2009 Jan; 390(1):27-30. PubMed ID: 19007307 [TBL] [Abstract][Full Text] [Related]
55. Structure of the Escherichia coli heptosyltransferase WaaC: binary complexes with ADP and ADP-2-deoxy-2-fluoro heptose. Grizot S; Salem M; Vongsouthi V; Durand L; Moreau F; Dohi H; Vincent S; Escaich S; Ducruix A J Mol Biol; 2006 Oct; 363(2):383-94. PubMed ID: 16963083 [TBL] [Abstract][Full Text] [Related]
57. The orthologue of the "acatalytic" mammalian ART4 in chicken is an arginine-specific mono-ADP-ribosyltransferase. Grahnert A; Richter S; Siegert F; Berndt A; Hauschildt S BMC Mol Biol; 2008 Oct; 9():86. PubMed ID: 18854029 [TBL] [Abstract][Full Text] [Related]
58. Using secondary structure predictions and site-directed mutagenesis to identify and probe the role of potential active site motifs in the RT6 mono(ADP-ribosyl)transferases. Bredehorst K; Wursthorn K; Thiele HG; Haag F; Koch-Nolte F Adv Exp Med Biol; 1997; 419():185-9. PubMed ID: 9193653 [TBL] [Abstract][Full Text] [Related]
59. An In-Silico Sequence-Structure-Function Analysis of the N-Terminal Lobe in CT Group Bacterial ADP-Ribosyltransferase Toxins. Lugo MR; Merrill AR Toxins (Basel); 2019 Jun; 11(6):. PubMed ID: 31234283 [TBL] [Abstract][Full Text] [Related]