BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

191 related articles for article (PubMed ID: 16956583)

  • 1. Detection of redox-based modification in two-dimensional electrophoresis proteomic separations.
    Sheehan D
    Biochem Biophys Res Commun; 2006 Oct; 349(2):455-62. PubMed ID: 16956583
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Identification of intra- and intermolecular disulphide bonding in the plant mitochondrial proteome by diagonal gel electrophoresis.
    Winger AM; Taylor NL; Heazlewood JL; Day DA; Millar AH
    Proteomics; 2007 Nov; 7(22):4158-70. PubMed ID: 17994621
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Redox proteomics in the mussel, Mytilus edulis.
    McDonagh B; Tyther R; Sheehan D
    Mar Environ Res; 2006 Jul; 62 Suppl():S101-4. PubMed ID: 16684561
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Disease proteomics of high-molecular-mass proteins by two-dimensional gel electrophoresis with agarose gels in the first dimension (Agarose 2-DE).
    Oh-Ishi M; Maeda T
    J Chromatogr B Analyt Technol Biomed Life Sci; 2007 Apr; 849(1-2):211-22. PubMed ID: 17141588
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of oxidative stress on protein thiols and disulphides in Mytilus edulis revealed by proteomics: actin and protein disulphide isomerase are redox targets.
    McDonagh B; Sheehan D
    Mar Environ Res; 2008 Jul; 66(1):193-5. PubMed ID: 18396326
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Covalent selection of the thiol proteome on activated thiol sepharose: a robust tool for redox proteomics.
    Hu W; Tedesco S; Faedda R; Petrone G; Cacciola SO; O'Keefe A; Sheehan D
    Talanta; 2010 Feb; 80(4):1569-75. PubMed ID: 20082816
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Redox proteomics in the blue mussel Mytilus edulis: carbonylation is not a pre-requisite for ubiquitination in acute free radical-mediated oxidative stress.
    McDonagh B; Sheehan D
    Aquat Toxicol; 2006 Oct; 79(4):325-33. PubMed ID: 16930738
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Redox proteomics: basic principles and future perspectives for the detection of protein oxidation in plants.
    Rinalducci S; Murgiano L; Zolla L
    J Exp Bot; 2008; 59(14):3781-801. PubMed ID: 18977746
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Concepts and approaches towards understanding the cellular redox proteome.
    Ströher E; Dietz KJ
    Plant Biol (Stuttg); 2006 Jul; 8(4):407-18. PubMed ID: 16906481
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Proteomic analysis of redox- and ErbB2-dependent changes in mammary luminal epithelial cells using cysteine- and lysine-labelling two-dimensional difference gel electrophoresis.
    Chan HL; Gharbi S; Gaffney PR; Cramer R; Waterfield MD; Timms JF
    Proteomics; 2005 Jul; 5(11):2908-26. PubMed ID: 15954156
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Oxidative damage of mitochondrial proteins contributes to fruit senescence: a redox proteomics analysis.
    Qin G; Meng X; Wang Q; Tian S
    J Proteome Res; 2009 May; 8(5):2449-62. PubMed ID: 19239264
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Oxidative stress in the aging murine olfactory bulb: redox proteomics and cellular localization.
    Vaishnav RA; Getchell ML; Poon HF; Barnett KR; Hunter SA; Pierce WM; Klein JB; Butterfield DA; Getchell TV
    J Neurosci Res; 2007 Feb; 85(2):373-85. PubMed ID: 17131389
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dialysis-assisted two-dimensional gel electrophoresis.
    Danos O; Svinartchouk F
    Electrophoresis; 2006 Sep; 27(17):3475-9. PubMed ID: 16888709
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Proteomics identification of oxidatively modified proteins in brain.
    Sultana R; Perluigi M; Butterfield DA
    Methods Mol Biol; 2009; 564():291-301. PubMed ID: 19544029
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Selectivity of protein carbonylation in the apoptotic response to oxidative stress associated with photodynamic therapy: a cell biochemical and proteomic investigation.
    Magi B; Ettorre A; Liberatori S; Bini L; Andreassi M; Frosali S; Neri P; Pallini V; Di Stefano A
    Cell Death Differ; 2004 Aug; 11(8):842-52. PubMed ID: 15088069
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Proteomics and redox-proteomics of the effects of herbicides on a wild-type wine Saccharomyces cerevisiae strain.
    Braconi D; Bernardini G; Possenti S; Laschi M; Arena S; Scaloni A; Geminiani M; Sotgiu M; Santucci A
    J Proteome Res; 2009 Jan; 8(1):256-67. PubMed ID: 19032026
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Diagonal electrophoresis for detection of protein disulphide bridges.
    McDonagh B
    Methods Mol Biol; 2009; 519():305-10. PubMed ID: 19381591
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Carbonylation and glutathionylation of proteins in the blue mussel Mytilus edulis detected by proteomic analysis and Western blotting: Actin as a target for oxidative stress.
    McDonagh B; Tyther R; Sheehan D
    Aquat Toxicol; 2005 Jul; 73(3):315-26. PubMed ID: 15869813
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Immobilization of the first dimension in 2D blue native/SDS-PAGE allows the relative quantification of membrane proteomes.
    Klepsch M; Schlegel S; Wickström D; Friso G; van Wijk KJ; Persson JO; de Gier JW; Wagner S
    Methods; 2008 Oct; 46(2):48-53. PubMed ID: 18674622
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Proteomic approaches to identifying carbonylated proteins in brain tissue.
    Linares M; Marín-Garcíía P; Méndez D; Puyet A; Diez A; Bautista JM
    J Proteome Res; 2011 Apr; 10(4):1719-27. PubMed ID: 21235272
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.