BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 16956716)

  • 1. Removal of iron from groundwater by ash: a systematic study of a traditional method.
    Das B; Hazarika P; Saikia G; Kalita H; Goswami DC; Das HB; Dube SN; Dutta RK
    J Hazard Mater; 2007 Mar; 141(3):834-41. PubMed ID: 16956716
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Removal of Fe(II) from tap water by electrocoagulation technique.
    Ghosh D; Solanki H; Purkait MK
    J Hazard Mater; 2008 Jun; 155(1-2):135-43. PubMed ID: 18164128
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Adsorption of lead and mercury by rice husk ash.
    Feng Q; Lin Q; Gong F; Sugita S; Shoya M
    J Colloid Interface Sci; 2004 Oct; 278(1):1-8. PubMed ID: 15313631
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A laboratory study for the treatment of arsenic, iron, and manganese bearing ground water using Fe(3+) impregnated activated carbon: effects of shaking time, pH and temperature.
    Mondal P; Balomajumder C; Mohanty B
    J Hazard Mater; 2007 Jun; 144(1-2):420-6. PubMed ID: 17141955
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Arsenic removal by iron oxide coated sponge: treatment and waste management.
    Nguyen TV; Rahman A; Vigneswaran S; Ngo HH; Kandasamy J; Nguyen DT; Do TA; Nguyen TK
    Water Sci Technol; 2009; 60(6):1489-95. PubMed ID: 19759451
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hexavalent chromium reduction with scrap iron in continuous-flow system Part 1: effect of feed solution pH.
    Gheju M; Iovi A; Balcu I
    J Hazard Mater; 2008 May; 153(1-2):655-62. PubMed ID: 17933460
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The sorption of lead(II) ions on rice husk ash.
    Naiya TK; Bhattacharya AK; Mandal S; Das SK
    J Hazard Mater; 2009 Apr; 163(2-3):1254-64. PubMed ID: 18783880
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Coal fly ash and synthetic coal fly ash aggregates as reactive media to remove zinc from aqueous solutions.
    Hong JK; Jo HY; Yun ST
    J Hazard Mater; 2009 May; 164(1):235-46. PubMed ID: 18805638
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Arsenate removal by zero valent iron: batch and column tests.
    Biterna M; Arditsoglou A; Tsikouras E; Voutsa D
    J Hazard Mater; 2007 Nov; 149(3):548-52. PubMed ID: 17689184
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Heterogeneous Fenton-like catalytic removal of p-nitrophenol in water using acid-activated fly ash.
    Zhang A; Wang N; Zhou J; Jiang P; Liu G
    J Hazard Mater; 2012 Jan; 201-202():68-73. PubMed ID: 22169244
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of humic acid on arsenic(V) removal by zero-valent iron from groundwater with special references to corrosion products analyses.
    Rao P; Mak MS; Liu T; Lai KC; Lo IM
    Chemosphere; 2009 Apr; 75(2):156-62. PubMed ID: 19157491
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Decolorization of Acid Red 1 by Fenton-like process using rice husk ash-based catalyst.
    Daud NK; Hameed BH
    J Hazard Mater; 2010 Apr; 176(1-3):938-44. PubMed ID: 20042285
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Uptake of Zn2+ ions by a fully iron-exchanged clinoptilolite. Case study of heavily contaminated drinking water samples.
    Dimirkou A
    Water Res; 2007 Jun; 41(12):2763-73. PubMed ID: 17445862
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Phosphate immobilization from aqueous solution by fly ashes in relation to their composition.
    Chen J; Kong H; Wu D; Chen X; Zhang D; Sun Z
    J Hazard Mater; 2007 Jan; 139(2):293-300. PubMed ID: 16860931
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Performance evaluation of granular iron for removing hexavalent chromium under different geochemical conditions.
    Jeen SW; Blowes DW; Gillham RW
    J Contam Hydrol; 2008 Jan; 95(1-2):76-91. PubMed ID: 17913283
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Removal of arsenic from wastewaters using electrocoagulation.
    Deniel R; Bindu VH; Rao AV; Anjaneyulu Y
    J Environ Sci Eng; 2008 Oct; 50(4):283-8. PubMed ID: 19697763
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Removal of 2-chlorophenol from water using rice-straw derived ash.
    Chang RR; Wang SL; Tzou YM; Chen YM; Wang MK
    J Environ Sci Health B; 2011; 46(2):128-36. PubMed ID: 21328121
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of adsorbent dose, its particle size and initial arsenic concentration on the removal of arsenic, iron and manganese from simulated ground water by Fe3+ impregnated activated carbon.
    Mondal P; Majumder CB; Mohanty B
    J Hazard Mater; 2008 Feb; 150(3):695-702. PubMed ID: 17574333
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Removal of arsenite by Fe(VI), Fe(VI)/Fe(III), and Fe(VI)/Al(III) salts: effect of pH and anions.
    Jain A; Sharma VK; Mbuya OS
    J Hazard Mater; 2009 Sep; 169(1-3):339-44. PubMed ID: 19409704
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Removal of iron and manganese using biological roughing up flow filtration technology.
    Pacini VA; María Ingallinella A; Sanguinetti G
    Water Res; 2005 Nov; 39(18):4463-75. PubMed ID: 16225901
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.