These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
239 related articles for article (PubMed ID: 16957200)
1. Engineering a Saccharomyces cerevisiae wine yeast that exhibits reduced ethanol production during fermentation under controlled microoxygenation conditions. Heux S; Sablayrolles JM; Cachon R; Dequin S Appl Environ Microbiol; 2006 Sep; 72(9):5822-8. PubMed ID: 16957200 [TBL] [Abstract][Full Text] [Related]
2. Enhanced xylose fermentation by engineered yeast expressing NADH oxidase through high cell density inoculums. Zhang GC; Turner TL; Jin YS J Ind Microbiol Biotechnol; 2017 Mar; 44(3):387-395. PubMed ID: 28070721 [TBL] [Abstract][Full Text] [Related]
3. Decreased xylitol formation during xylose fermentation in Saccharomyces cerevisiae due to overexpression of water-forming NADH oxidase. Zhang GC; Liu JJ; Ding WT Appl Environ Microbiol; 2012 Feb; 78(4):1081-6. PubMed ID: 22156411 [TBL] [Abstract][Full Text] [Related]
4. Cofactor engineering in Saccharomyces cerevisiae: Expression of a H2O-forming NADH oxidase and impact on redox metabolism. Heux S; Cachon R; Dequin S Metab Eng; 2006 Jul; 8(4):303-14. PubMed ID: 16473032 [TBL] [Abstract][Full Text] [Related]
5. Fine-tuning of NADH oxidase decreases byproduct accumulation in respiration deficient xylose metabolic Saccharomyces cerevisiae. Hou J; Suo F; Wang C; Li X; Shen Y; Bao X BMC Biotechnol; 2014 Feb; 14():13. PubMed ID: 24529074 [TBL] [Abstract][Full Text] [Related]
6. Expression of Lactococcus lactis NADH oxidase increases 2,3-butanediol production in Pdc-deficient Saccharomyces cerevisiae. Kim JW; Seo SO; Zhang GC; Jin YS; Seo JH Bioresour Technol; 2015 Sep; 191():512-9. PubMed ID: 25769689 [TBL] [Abstract][Full Text] [Related]
7. Deletion of glycerol-3-phosphate dehydrogenase genes improved 2,3-butanediol production by reducing glycerol production in pyruvate decarboxylase-deficient Saccharomyces cerevisiae. Kim JW; Lee YG; Kim SJ; Jin YS; Seo JH J Biotechnol; 2019 Oct; 304():31-37. PubMed ID: 31421146 [TBL] [Abstract][Full Text] [Related]
8. Increasing anaerobic acetate consumption and ethanol yields in Saccharomyces cerevisiae with NADPH-specific alcohol dehydrogenase. Henningsen BM; Hon S; Covalla SF; Sonu C; Argyros DA; Barrett TF; Wiswall E; Froehlich AC; Zelle RM Appl Environ Microbiol; 2015 Dec; 81(23):8108-17. PubMed ID: 26386051 [TBL] [Abstract][Full Text] [Related]
10. Efficient production of 2,3-butanediol in Saccharomyces cerevisiae by eliminating ethanol and glycerol production and redox rebalancing. Kim S; Hahn JS Metab Eng; 2015 Sep; 31():94-101. PubMed ID: 26226562 [TBL] [Abstract][Full Text] [Related]
11. Fermentation of mixed glucose-xylose substrates by engineered strains of Saccharomyces cerevisiae: role of the coenzyme specificity of xylose reductase, and effect of glucose on xylose utilization. Krahulec S; Petschacher B; Wallner M; Longus K; Klimacek M; Nidetzky B Microb Cell Fact; 2010 Mar; 9():16. PubMed ID: 20219100 [TBL] [Abstract][Full Text] [Related]
12. Cofactor engineering: a novel approach to metabolic engineering in Lactococcus lactis by controlled expression of NADH oxidase. Lopez de Felipe F; Kleerebezem M; de Vos WM; Hugenholtz J J Bacteriol; 1998 Aug; 180(15):3804-8. PubMed ID: 9683475 [TBL] [Abstract][Full Text] [Related]
13. Improving ethanol yield in acetate-reducing Saccharomyces cerevisiae by cofactor engineering of 6-phosphogluconate dehydrogenase and deletion of ALD6. Papapetridis I; van Dijk M; Dobbe AP; Metz B; Pronk JT; van Maris AJ Microb Cell Fact; 2016 Apr; 15():67. PubMed ID: 27118055 [TBL] [Abstract][Full Text] [Related]
14. Bioethanol production from cellulosic hydrolysates by engineered industrial Saccharomyces cerevisiae. Lee YG; Jin YS; Cha YL; Seo JH Bioresour Technol; 2017 Mar; 228():355-361. PubMed ID: 28088640 [TBL] [Abstract][Full Text] [Related]
15. Efficient production of acetoin in Saccharomyces cerevisiae by disruption of 2,3-butanediol dehydrogenase and expression of NADH oxidase. Bae SJ; Kim S; Hahn JS Sci Rep; 2016 Jun; 6():27667. PubMed ID: 27279026 [TBL] [Abstract][Full Text] [Related]
16. High-level acetaldehyde production in Lactococcus lactis by metabolic engineering. Bongers RS; Hoefnagel MH; Kleerebezem M Appl Environ Microbiol; 2005 Feb; 71(2):1109-13. PubMed ID: 15691976 [TBL] [Abstract][Full Text] [Related]
17. Engineering of a novel Saccharomyces cerevisiae wine strain with a respiratory phenotype at high external glucose concentrations. Henricsson C; de Jesus Ferreira MC; Hedfalk K; Elbing K; Larsson C; Bill RM; Norbeck J; Hohmann S; Gustafsson L Appl Environ Microbiol; 2005 Oct; 71(10):6185-92. PubMed ID: 16204537 [TBL] [Abstract][Full Text] [Related]
18. Fine tuning of the lactate and diacetyl production through promoter engineering in Lactococcus lactis. Guo T; Kong J; Zhang L; Zhang C; Hu S PLoS One; 2012; 7(4):e36296. PubMed ID: 22558426 [TBL] [Abstract][Full Text] [Related]
19. Reduction of furan derivatives by overexpressing NADH-dependent Adh1 improves ethanol fermentation using xylose as sole carbon source with Saccharomyces cerevisiae harboring XR-XDH pathway. Ishii J; Yoshimura K; Hasunuma T; Kondo A Appl Microbiol Biotechnol; 2013 Mar; 97(6):2597-607. PubMed ID: 23001007 [TBL] [Abstract][Full Text] [Related]
20. Metabolic analysis of the synthesis of high levels of intracellular human SOD in Saccharomyces cerevisiae rhSOD 2060 411 SGA122. Gonzalez R; Andrews BA; Molitor J; Asenjo JA Biotechnol Bioeng; 2003 Apr; 82(2):152-69. PubMed ID: 12584757 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]