BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 16957215)

  • 1. Application of the [3H]leucine incorporation technique for quantification of bacterial secondary production associated with decaying wetland plant litter.
    Gillies JE; Kuehn KA; Francoeur SN; Neely RK
    Appl Environ Microbiol; 2006 Sep; 72(9):5948-56. PubMed ID: 16957215
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Periphytic photosynthetic stimulation of extracellular enzyme activity in aquatic microbial communities associated with decaying typha litter.
    Francoeur SN; Schaecher M; Neely RK; Kuehn KA
    Microb Ecol; 2006 Nov; 52(4):662-9. PubMed ID: 17082997
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Incorporation of radiolabeled leucine into protein to estimate bacterial production in plant litter, sediment, epiphytic biofilms, and water samples.
    Buesing N; Gessner MO
    Microb Ecol; 2003 Mar; 45(3):291-301. PubMed ID: 12658525
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [3H]Leucine incorporation method as a tool to measure secondary production by periphytic bacteria associated to the roots of floating aquatic macrophyte.
    Miranda MR; Guimarães JR; Coelho-Souza AS
    J Microbiol Methods; 2007 Oct; 71(1):23-31. PubMed ID: 17765986
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Priming in the microbial landscape: periphytic algal stimulation of litter-associated microbial decomposers.
    Kuehn KA; Francoeur SN; Findlay RH; Neely RK
    Ecology; 2014 Mar; 95(3):749-62. PubMed ID: 24804458
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Use of the [(14)C]leucine incorporation technique to measure bacterial production in river sediments and the epiphyton.
    Fischer H; Pusch M
    Appl Environ Microbiol; 1999 Oct; 65(10):4411-8. PubMed ID: 10508068
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Seasonal changes in fungal production and biomass on standing dead Scirpus lacustris litter in a northern prairie wetland.
    Verma B; Robarts RD; Headley JV
    Appl Environ Microbiol; 2003 Feb; 69(2):1043-50. PubMed ID: 12571027
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Benthic bacterial and fungal productivity and carbon turnover in a freshwater marsh.
    Buesing N; Gessner MO
    Appl Environ Microbiol; 2006 Jan; 72(1):596-605. PubMed ID: 16391096
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The leucine incorporation method estimates bacterial growth equally well in both oxic and anoxic lake waters.
    Bastviken D; Tranvik L
    Appl Environ Microbiol; 2001 Jul; 67(7):2916-21. PubMed ID: 11425702
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Bacterial activity in plant (Schoenoplectus validus) biofilms of constructed wetlands.
    Pollard PC
    Water Res; 2010 Dec; 44(20):5939-48. PubMed ID: 20723964
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Antagonism between bacteria and fungi on decomposing aquatic plant litter.
    Mille-Lindblom C; Tranvik LJ
    Microb Ecol; 2003 Feb; 45(2):173-82. PubMed ID: 12545315
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Bacterial and fungal colonization and decomposition of submerged plant litter: consequences for biogenic silica dissolution.
    Alfredsson H; Clymans W; Stadmark J; Conley D; Rousk J
    FEMS Microbiol Ecol; 2016 Mar; 92(3):. PubMed ID: 26790464
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Application of fungal and bacterial production methodologies to decomposing leaves in streams.
    Suberkropp K; Weyers H
    Appl Environ Microbiol; 1996 May; 62(5):1610-5. PubMed ID: 16535312
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The estimated impact of fungi on nutrient dynamics during decomposition of Phragmites australis leaf sheaths and stems.
    Van Ryckegem G; Van Driessche G; Van Beeumen JJ; Verbeken A
    Microb Ecol; 2006 Oct; 52(3):564-74. PubMed ID: 17006744
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Taxonomic structure and function of seed-inhabiting bacterial microbiota from common reed (Phragmites australis) and narrowleaf cattail (Typha angustifolia L.).
    Gao T; Shi XY
    Arch Microbiol; 2018 Aug; 200(6):869-876. PubMed ID: 29455240
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fungi on leaf blades of Phragmites australis in a brackish tidal marsh: diversity, succession, and leaf decomposition.
    Van Ryckegem G; Gessner MO; Verbeken A
    Microb Ecol; 2007 May; 53(4):600-11. PubMed ID: 17334859
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Growth of saprotrophic fungi and bacteria in soil.
    Rousk J; Bååth E
    FEMS Microbiol Ecol; 2011 Oct; 78(1):17-30. PubMed ID: 21470255
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Can differences in phosphorus uptake kinetics explain the distribution of cattail and sawgrass in the Florida Everglades?
    Brix H; Lorenzen B; Mendelssohn IA; McKee KL; Miao S
    BMC Plant Biol; 2010 Feb; 10():23. PubMed ID: 20141632
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nutrient removal through autumn harvest of Phragmites australis and Thypha latifolia shoots in relation to nutrient loading in a wetland system used for polishing sewage treatment plant effluent.
    Toet S; Bouwman M; Cevaal A; Verhoeven JT
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2005; 40(6-7):1133-56. PubMed ID: 15921271
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Phytoremediation of micropollutants by
    Lei Y; Carlucci L; Rijnaarts H; Langenhoff A
    Int J Phytoremediation; 2023; 25(1):82-88. PubMed ID: 35414315
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.