These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 16957215)

  • 41. Estimates of bacterial growth from changes in uptake rates and biomass.
    Kirchman D; Ducklow H; Mitchell R
    Appl Environ Microbiol; 1982 Dec; 44(6):1296-307. PubMed ID: 6760812
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Potential methane production and molecular characterization of bacterial and archaeal communities in a horizontal subsurface flow constructed wetland under cold and warm seasons.
    López D; Sepúlveda-Mardones M; Ruiz-Tagle N; Sossa K; Uggetti E; Vidal G
    Sci Total Environ; 2019 Jan; 648():1042-1051. PubMed ID: 30340252
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Effects of an invasive cattail species (Typha x glauca) on sediment nitrogen and microbial community composition in a freshwater wetland.
    Angeloni NL; Jankowski KJ; Tuchman NC; Kelly JJ
    FEMS Microbiol Lett; 2006 Oct; 263(1):86-92. PubMed ID: 16958855
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Influence of plant radial oxygen loss in constructed wetland combined with microbial fuel cell on nitrobenzene removal from aqueous solution.
    Di L; Li Y; Nie L; Wang S; Kong F
    J Hazard Mater; 2020 Jul; 394():122542. PubMed ID: 32240899
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Plant litter decomposition in wetlands is closely associated with phyllospheric fungi as revealed by microbial community dynamics and co-occurrence network.
    Zhan P; Liu Y; Wang H; Wang C; Xia M; Wang N; Cui W; Xiao D; Wang H
    Sci Total Environ; 2021 Jan; 753():142194. PubMed ID: 33207455
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Assessing the Bacterial Community Structure in the Rhizoplane of Wetland Plants.
    Singh T; Singh DK
    Bull Environ Contam Toxicol; 2018 Oct; 101(4):521-526. PubMed ID: 30182151
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Activity and phylogenetic diversity of bacterial cells with high and low nucleic acid content and electron transport system activity in an upwelling ecosystem.
    Longnecker K; Sherr BF; Sherr EB
    Appl Environ Microbiol; 2005 Dec; 71(12):7737-49. PubMed ID: 16332746
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Evaluation of long-term phosphorus uptake by
    Carrillo V; Collins C; Brisson J; Vidal G
    Int J Phytoremediation; 2022; 24(6):610-621. PubMed ID: 34382468
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Impact of elevated CO₂ and N addition on bacteria, fungi, and archaea in a marsh ecosystem with various types of plants.
    Lee SH; Kim SY; Ding W; Kang H
    Appl Microbiol Biotechnol; 2015 Jun; 99(12):5295-305. PubMed ID: 25605423
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Incorporation of carbon from decomposing litter of two pioneer plant species into microbial communities of the detritusphere.
    Esperschütz J; Welzl G; Schreiner K; Buegger F; Munch JC; Schloter M
    FEMS Microbiol Lett; 2011 Jul; 320(1):48-55. PubMed ID: 21492198
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Contribution of fungi and bacteria to leaf litter decomposition in a polluted river.
    Pascoal C; Cássio F
    Appl Environ Microbiol; 2004 Sep; 70(9):5266-73. PubMed ID: 15345409
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Temperature-driven adaptation of the bacterial community in peat measured by using thymidine and leucine incorporation.
    Ranneklev SB; Bååth E
    Appl Environ Microbiol; 2001 Mar; 67(3):1116-22. PubMed ID: 11229900
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Effect of inorganic nutrients on relative contributions of fungi and bacteria to carbon flow from submerged decomposing leaf litter.
    Gulis V; Suberkropp K
    Microb Ecol; 2003 Jan; 45(1):11-9. PubMed ID: 12447584
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Comparison of aerobic and anaerobic [3H]leucine incorporation assays for determining pollution-induced bacterial community tolerance in copper-polluted, irrigated soils.
    Aaen KN; Holm PE; Priemé A; Hung NN; Brandt KK
    Environ Toxicol Chem; 2011 Mar; 30(3):588-95. PubMed ID: 21298704
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Repeated large-scale mechanical treatment of invasive Typha under increasing water levels promotes floating mat formation and wetland methane emissions.
    Johnson OF; Panda A; Lishawa SC; Lawrence BA
    Sci Total Environ; 2021 Oct; 790():147920. PubMed ID: 34380259
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Uptake of bromide by two wetland plants (Typha latifolia L. and Phragmites australis (Cav.) Trin. ex Steud).
    Xu S; Leri AC; Myneni SC; Jaffe PR
    Environ Sci Technol; 2004 Nov; 38(21):5642-8. PubMed ID: 15575283
    [TBL] [Abstract][Full Text] [Related]  

  • 57. The potential phototoxicity of nano-scale ZnO induced by visible light on freshwater ecosystems.
    Du J; Qv M; Zhang Y; Yin X; Wan N; Zhang B; Zhang H
    Chemosphere; 2018 Oct; 208():698-706. PubMed ID: 29894971
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Contrasting ability to take up leucine and thymidine among freshwater bacterial groups: implications for bacterial production measurements.
    Pérez MT; Hörtnagl P; Sommaruga R
    Environ Microbiol; 2010 Jan; 12(1):74-82. PubMed ID: 19725866
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Fungal and bacterial growth in soil with plant materials of different C/N ratios.
    Rousk J; Bååth E
    FEMS Microbiol Ecol; 2007 Dec; 62(3):258-67. PubMed ID: 17991019
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Alum application to improve water quality in a municipal wastewater treatment wetland: effects on macrophyte growth and nutrient uptake.
    Malecki-Brown LM; White JR; Brix H
    Chemosphere; 2010 Mar; 79(2):186-92. PubMed ID: 20185158
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.