BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

307 related articles for article (PubMed ID: 16957739)

  • 1. The pathological response to DNA damage does not contribute to p53-mediated tumour suppression.
    Christophorou MA; Ringshausen I; Finch AJ; Swigart LB; Evan GI
    Nature; 2006 Sep; 443(7108):214-7. PubMed ID: 16957739
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Lack of p53 Ser389 phosphorylation predisposes mice to develop 2-acetylaminofluorene-induced bladder tumors but not ionizing radiation-induced lymphomas.
    Hoogervorst EM; Bruins W; Zwart E; van Oostrom CT; van den Aardweg GJ; Beems RB; van den Berg J; Jacks T; van Steeg H; de Vries A
    Cancer Res; 2005 May; 65(9):3610-6. PubMed ID: 15867355
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Deletion of Irf5 protects hematopoietic stem cells from DNA damage-induced apoptosis and suppresses γ-irradiation-induced thymic lymphomagenesis.
    Bi X; Feng D; Korczeniewska J; Alper N; Hu G; Barnes BJ
    Oncogene; 2014 Jun; 33(25):3288-97. PubMed ID: 23912454
    [TBL] [Abstract][Full Text] [Related]  

  • 4. p53 and tumor suppression.
    Van Dyke T
    N Engl J Med; 2007 Jan; 356(1):79-81. PubMed ID: 17202460
    [No Abstract]   [Full Text] [Related]  

  • 5. Tumorigenic activity of p21Waf1/Cip1 in thymic lymphoma.
    De la Cueva E; García-Cao I; Herranz M; López P; García-Palencia P; Flores JM; Serrano M; Fernández-Piqueras J; Martín-Caballero J
    Oncogene; 2006 Jul; 25(29):4128-32. PubMed ID: 16462758
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Genetic dissection of the role of p21Cip1/Waf1 in p53-mediated tumour suppression.
    Efeyan A; Collado M; Velasco-Miguel S; Serrano M
    Oncogene; 2007 Mar; 26(11):1645-9. PubMed ID: 16964282
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nucleophosmin is required for DNA integrity and p19Arf protein stability.
    Colombo E; Bonetti P; Lazzerini Denchi E; Martinelli P; Zamponi R; Marine JC; Helin K; Falini B; Pelicci PG
    Mol Cell Biol; 2005 Oct; 25(20):8874-86. PubMed ID: 16199867
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ribosomal protein S27-like, a p53-inducible modulator of cell fate in response to genotoxic stress.
    Li J; Tan J; Zhuang L; Banerjee B; Yang X; Chau JF; Lee PL; Hande MP; Li B; Yu Q
    Cancer Res; 2007 Dec; 67(23):11317-26. PubMed ID: 18056458
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cancer biology: can less be more for p53?
    Berns A
    Nature; 2006 Sep; 443(7108):153-4. PubMed ID: 16971934
    [No Abstract]   [Full Text] [Related]  

  • 10. Functional interplay of p53 and Mus81 in DNA damage responses and cancer.
    Pamidi A; Cardoso R; Hakem A; Matysiak-Zablocki E; Poonepalli A; Tamblyn L; Perez-Ordonez B; Hande MP; Sanchez O; Hakem R
    Cancer Res; 2007 Sep; 67(18):8527-35. PubMed ID: 17875692
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Susceptibility to radiation-carcinogenesis and accumulation of chromosomal breakage in p53 deficient mice.
    Lee JM; Abrahamson JL; Kandel R; Donehower LA; Bernstein A
    Oncogene; 1994 Dec; 9(12):3731-6. PubMed ID: 7970733
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Tripeptidyl peptidase II plays a role in the radiation response of selected primary cell types but not based on nuclear translocation and p53 stabilization.
    Firat E; Tsurumi C; Gaedicke S; Huai J; Niedermann G
    Cancer Res; 2009 Apr; 69(8):3325-31. PubMed ID: 19351849
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Attenuation of the p53 response to DNA damage by high cell density.
    Bar J; Cohen-Noyman E; Geiger B; Oren M
    Oncogene; 2004 Mar; 23(12):2128-37. PubMed ID: 14755247
    [TBL] [Abstract][Full Text] [Related]  

  • 14. p53 modulation of the DNA damage response.
    Helton ES; Chen X
    J Cell Biochem; 2007 Mar; 100(4):883-96. PubMed ID: 17031865
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Modeling the therapeutic efficacy of p53 restoration in tumors.
    Martins CP; Brown-Swigart L; Evan GI
    Cell; 2006 Dec; 127(7):1323-34. PubMed ID: 17182091
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ongoing activation of p53 pathway responses is a long-term consequence of radiation exposure in vivo and associates with altered macrophage activities.
    Coates PJ; Robinson JI; Lorimore SA; Wright EG
    J Pathol; 2008 Apr; 214(5):610-6. PubMed ID: 18266203
    [TBL] [Abstract][Full Text] [Related]  

  • 17. DNA damage signalling recruits RREB-1 to the p53 tumour suppressor promoter.
    Liu H; Hew HC; Lu ZG; Yamaguchi T; Miki Y; Yoshida K
    Biochem J; 2009 Aug; 422(3):543-51. PubMed ID: 19558368
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The multi-step process of human skin carcinogenesis: a role for p53, cyclin D1, hTERT, p16, and TSP-1.
    Burnworth B; Arendt S; Muffler S; Steinkraus V; Bröcker EB; Birek C; Hartschuh W; Jauch A; Boukamp P
    Eur J Cell Biol; 2007 Dec; 86(11-12):763-80. PubMed ID: 17198740
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A single recombinant adenovirus expressing p53 and p21-targeting artificial microRNAs efficiently induces apoptosis in human cancer cells.
    Idogawa M; Sasaki Y; Suzuki H; Mita H; Imai K; Shinomura Y; Tokino T
    Clin Cancer Res; 2009 Jun; 15(11):3725-32. PubMed ID: 19458054
    [TBL] [Abstract][Full Text] [Related]  

  • 20. In vivo bystander effect: cranial X-irradiation leads to elevated DNA damage, altered cellular proliferation and apoptosis, and increased p53 levels in shielded spleen.
    Koturbash I; Loree J; Kutanzi K; Koganow C; Pogribny I; Kovalchuk O
    Int J Radiat Oncol Biol Phys; 2008 Feb; 70(2):554-62. PubMed ID: 18207032
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.