These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
177 related articles for article (PubMed ID: 16958046)
1. In vivo biostability of polyether polyurethanes with fluoropolymer and polyethylene oxide surface modifying endgroups; resistance to metal ion oxidation. Ward R; Anderson J; McVenes R; Stokes K J Biomed Mater Res A; 2007 Jan; 80(1):34-44. PubMed ID: 16958046 [TBL] [Abstract][Full Text] [Related]
2. In vivo biostability of polysiloxane polyether polyurethanes: resistance to metal ion oxidation. Ward B; Anderson J; Ebert M; McVenes R; Stokes K J Biomed Mater Res A; 2006 May; 77(2):380-9. PubMed ID: 16425243 [TBL] [Abstract][Full Text] [Related]
3. In vivo biostability of shore 55D polyether polyurethanes with and without fluoropolymer surface modifying endgroups. Ward R; Anderson J; McVenes R; Stokes K J Biomed Mater Res A; 2006 Dec; 79(4):836-45. PubMed ID: 16886224 [TBL] [Abstract][Full Text] [Related]
4. In vivo biostability of polyether polyurethanes with fluoropolymer surface modifying endgroups: resistance to biologic oxidation and stress cracking. Ward B; Anderson J; McVenes R; Stokes K J Biomed Mater Res A; 2006 Dec; 79(4):827-35. PubMed ID: 16886223 [TBL] [Abstract][Full Text] [Related]
5. In vivo biostability of polyether polyurethanes with polyethylene oxide surface-modifying end groups; resistance to biologic oxidation and stress cracking. Ebert M; Ward B; Anderson J; McVenes R; Stokes K J Biomed Mater Res A; 2005 Oct; 75(1):175-84. PubMed ID: 16041797 [TBL] [Abstract][Full Text] [Related]
6. In vivo biostability of polysiloxane polyether polyurethanes: resistance to biologic oxidation and stress cracking. Ward R; Anderson J; McVenes R; Stokes K J Biomed Mater Res A; 2006 Jun; 77(3):580-9. PubMed ID: 16506175 [TBL] [Abstract][Full Text] [Related]
7. Long-term in vivo biostability of poly(dimethylsiloxane)/poly(hexamethylene oxide) mixed macrodiol-based polyurethane elastomers. Simmons A; Hyvarinen J; Odell RA; Martin DJ; Gunatillake PA; Noble KR; Poole-Warren LA Biomaterials; 2004 Sep; 25(20):4887-900. PubMed ID: 15109849 [TBL] [Abstract][Full Text] [Related]
8. Long term in vitro biostability of segmented polyisobutylene-based thermoplastic polyurethanes. Cozzens D; Ojha U; Kulkarni P; Faust R; Desai S J Biomed Mater Res A; 2010 Dec; 95(3):774-82. PubMed ID: 20725977 [TBL] [Abstract][Full Text] [Related]
9. Analysis and evaluation of a biomedical polycarbonate urethane tested in an in vitro study and an ovine arthroplasty model. Part II: in vivo investigation. Khan I; Smith N; Jones E; Finch DS; Cameron RE Biomaterials; 2005 Feb; 26(6):633-43. PubMed ID: 15282141 [TBL] [Abstract][Full Text] [Related]
10. Analysis and evaluation of a biomedical polycarbonate urethane tested in an in vitro study and an ovine arthroplasty model. Part I: materials selection and evaluation. Khan I; Smith N; Jones E; Finch DS; Cameron RE Biomaterials; 2005 Feb; 26(6):621-31. PubMed ID: 15282140 [TBL] [Abstract][Full Text] [Related]
11. The in vivo auto-oxidation of polyether polyurethane by metal ions. Stokes K; Urbanski P; Upton J J Biomater Sci Polym Ed; 1990; 1(3):207-30. PubMed ID: 2275922 [TBL] [Abstract][Full Text] [Related]
13. Effect of soft-segment chemistry on polyurethane biostability during in vitro fatigue loading. Wiggins MJ; MacEwan M; Anderson JM; Hiltner A J Biomed Mater Res A; 2004 Mar; 68(4):668-83. PubMed ID: 14986322 [TBL] [Abstract][Full Text] [Related]
14. Oxidative mechanisms of poly(carbonate urethane) and poly(ether urethane) biodegradation: in vivo and in vitro correlations. Christenson EM; Anderson JM; Hiltner A J Biomed Mater Res A; 2004 Aug; 70(2):245-55. PubMed ID: 15227669 [TBL] [Abstract][Full Text] [Related]
15. In vivo biocompatibility of sulfonated PEO-grafted polyurethanes for polymer heart valve and vascular graft. Han DK; Park K; Park KD; Ahn KD; Kim YH Artif Organs; 2006 Dec; 30(12):955-9. PubMed ID: 17181836 [TBL] [Abstract][Full Text] [Related]
17. Biological stability of polyurethane modified with covalent attachment of di-tert-butyl-phenol. Stachelek SJ; Alferiev I; Fulmer J; Ischiropoulos H; Levy RJ J Biomed Mater Res A; 2007 Sep; 82(4):1004-11. PubMed ID: 17370325 [TBL] [Abstract][Full Text] [Related]
18. Nonfouling biomaterials based on polyethylene oxide-containing amphiphilic triblock copolymers as surface modifying additives: solid state structure of PEO-copolymer/polyurethane blends. Tan J; Brash JL J Biomed Mater Res A; 2008 Jun; 85(4):862-72. PubMed ID: 17896775 [TBL] [Abstract][Full Text] [Related]
19. In vitro oxidation of high polydimethylsiloxane content biomedical polyurethanes: correlation with the microstructure. Hernandez R; Weksler J; Padsalgikar A; Runt J J Biomed Mater Res A; 2008 Nov; 87(2):546-56. PubMed ID: 18186070 [TBL] [Abstract][Full Text] [Related]
20. In vivo biostability and calcification-resistance of surface-modified PU-PEO-SO3. Han DK; Park KD; Jeong SY; Kim YH; Kim UY; Min BG J Biomed Mater Res; 1993 Aug; 27(8):1063-73. PubMed ID: 8408119 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]