BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

164 related articles for article (PubMed ID: 16958585)

  • 1. Response of the contralateral hippocampus to lateral fluid percussion brain injury.
    Tran LD; Lifshitz J; Witgen BM; Schwarzbach E; Cohen AS; Grady MS
    J Neurotrauma; 2006 Sep; 23(9):1330-42. PubMed ID: 16958585
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Inbred mouse strains as a tool to analyze hippocampal neuronal loss after brain injury: a stereological study.
    Witgen BM; Lifshitz J; Grady MS
    J Neurotrauma; 2006 Sep; 23(9):1320-9. PubMed ID: 16958584
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Regional hippocampal alteration associated with cognitive deficit following experimental brain injury: a systems, network and cellular evaluation.
    Witgen BM; Lifshitz J; Smith ML; Schwarzbach E; Liang SL; Grady MS; Cohen AS
    Neuroscience; 2005; 133(1):1-15. PubMed ID: 15893627
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Alterations in hippocampal neurogenesis following traumatic brain injury in mice.
    Rola R; Mizumatsu S; Otsuka S; Morhardt DR; Noble-Haeusslein LJ; Fishman K; Potts MB; Fike JR
    Exp Neurol; 2006 Nov; 202(1):189-99. PubMed ID: 16876159
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dose-dependent neuronal injury after traumatic brain injury.
    Hellmich HL; Capra B; Eidson K; Garcia J; Kennedy D; Uchida T; Parsley M; Cowart J; DeWitt DS; Prough DS
    Brain Res; 2005 May; 1044(2):144-54. PubMed ID: 15885213
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Injured Fluoro-Jade-positive hippocampal neurons contain high levels of zinc after traumatic brain injury.
    Hellmich HL; Eidson KA; Capra BA; Garcia JM; Boone DR; Hawkins BE; Uchida T; Dewitt DS; Prough DS
    Brain Res; 2007 Jan; 1127(1):119-26. PubMed ID: 17109824
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Selective vulnerability of dentate hilar neurons following traumatic brain injury: a potential mechanistic link between head trauma and disorders of the hippocampus.
    Lowenstein DH; Thomas MJ; Smith DH; McIntosh TK
    J Neurosci; 1992 Dec; 12(12):4846-53. PubMed ID: 1464770
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Early loss of astrocytes after experimental traumatic brain injury.
    Zhao X; Ahram A; Berman RF; Muizelaar JP; Lyeth BG
    Glia; 2003 Nov; 44(2):140-52. PubMed ID: 14515330
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Traumatic brain injury in the immature mouse brain: characterization of regional vulnerability.
    Tong W; Igarashi T; Ferriero DM; Noble LJ
    Exp Neurol; 2002 Jul; 176(1):105-16. PubMed ID: 12093087
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Neuronal and glial cell number in the hippocampus after experimental traumatic brain injury: analysis by stereological estimation.
    Grady MS; Charleston JS; Maris D; Witgen BM; Lifshitz J
    J Neurotrauma; 2003 Oct; 20(10):929-41. PubMed ID: 14588110
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Anatomical integration of newly generated dentate granule neurons following traumatic brain injury in adult rats and its association to cognitive recovery.
    Sun D; McGinn MJ; Zhou Z; Harvey HB; Bullock MR; Colello RJ
    Exp Neurol; 2007 Mar; 204(1):264-72. PubMed ID: 17198703
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Differential consequences of lateral and central fluid percussion brain injury on receptor coupling in rat hippocampus.
    Delahunty TM; Jiang JY; Gong QZ; Black RT; Lyeth BG
    J Neurotrauma; 1995 Dec; 12(6):1045-57. PubMed ID: 8742133
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fluid percussion injury device for the precise control of injury parameters.
    Wahab RA; Neuberger EJ; Lyeth BG; Santhakumar V; Pfister BJ
    J Neurosci Methods; 2015 Jun; 248():16-26. PubMed ID: 25800515
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Pre-Injury magnesium treatment prevents traumatic brain injury-induced hippocampal ERK activation, neuronal loss, and cognitive dysfunction in the radial-arm maze test.
    Enomoto T; Osugi T; Satoh H; McIntosh TK; Nabeshima T
    J Neurotrauma; 2005 Jul; 22(7):783-92. PubMed ID: 16004581
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of fluid percussion injury on the neuronal activity in the hippocampal CA1 area and the dentate gyrus of the rat.
    Muraoka N
    Kurume Med J; 2002; 49(1-2):15-26. PubMed ID: 12235868
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Acute cognitive impairment after lateral fluid percussion brain injury recovers by 1 month: evaluation by conditioned fear response.
    Lifshitz J; Witgen BM; Grady MS
    Behav Brain Res; 2007 Feb; 177(2):347-57. PubMed ID: 17169443
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Traumatic brain injury elevates glycogen and induces tolerance to ischemia in rat brain.
    Otori T; Friedland JC; Sinson G; McIntosh TK; Raghupathi R; Welsh FA
    J Neurotrauma; 2004 Jun; 21(6):707-18. PubMed ID: 15253799
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Multi-modal magnetic resonance imaging alterations in two rat models of mild neurotrauma.
    Obenaus A; Robbins M; Blanco G; Galloway NR; Snissarenko E; Gillard E; Lee S; CurrĂ¡s-Collazo M
    J Neurotrauma; 2007 Jul; 24(7):1147-60. PubMed ID: 17610354
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nicotinamide treatment provides acute neuroprotection and GFAP regulation following fluid percussion injury.
    Holland MA; Tan AA; Smith DC; Hoane MR
    J Neurotrauma; 2008 Feb; 25(2):140-52. PubMed ID: 18260797
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Vagus nerve stimulation may protect GABAergic neurons following traumatic brain injury in rats: An immunocytochemical study.
    Neese SL; Sherill LK; Tan AA; Roosevelt RW; Browning RA; Smith DC; Duke A; Clough RW
    Brain Res; 2007 Jan; 1128(1):157-63. PubMed ID: 17125748
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.