BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

188 related articles for article (PubMed ID: 16958620)

  • 1. Trypanothione-dependent glyoxalase I in Trypanosoma cruzi.
    Greig N; Wyllie S; Vickers TJ; Fairlamb AH
    Biochem J; 2006 Dec; 400(2):217-23. PubMed ID: 16958620
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A trypanothione-dependent glyoxalase I with a prokaryotic ancestry in Leishmania major.
    Vickers TJ; Greig N; Fairlamb AH
    Proc Natl Acad Sci U S A; 2004 Sep; 101(36):13186-91. PubMed ID: 15329410
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Specificity of the trypanothione-dependent Leishmania major glyoxalase I: structure and biochemical comparison with the human enzyme.
    Ariza A; Vickers TJ; Greig N; Armour KA; Dixon MJ; Eggleston IM; Fairlamb AH; Bond CS
    Mol Microbiol; 2006 Feb; 59(4):1239-48. PubMed ID: 16430697
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Glyoxalase II of African trypanosomes is trypanothione-dependent.
    Irsch T; Krauth-Siegel RL
    J Biol Chem; 2004 May; 279(21):22209-17. PubMed ID: 14976196
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Methylglyoxal metabolism in trypanosomes and leishmania.
    Wyllie S; Fairlamb AH
    Semin Cell Dev Biol; 2011 May; 22(3):271-7. PubMed ID: 21310261
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A single enzyme catalyses formation of Trypanothione from glutathione and spermidine in Trypanosoma cruzi.
    Oza SL; Tetaud E; Ariyanayagam MR; Warnon SS; Fairlamb AH
    J Biol Chem; 2002 Sep; 277(39):35853-61. PubMed ID: 12121990
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Glyoxalase pathway of trypanosomatid parasites: a promising chemotherapeutic target.
    Chauhan SC; Padmanabhan PK; Madhubala R
    Curr Drug Targets; 2008 Nov; 9(11):957-65. PubMed ID: 18991608
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Glyoxalase II does not support methylglyoxal detoxification but serves as a general trypanothione thioesterase in African trypanosomes.
    Wendler A; Irsch T; Rabbani N; Thornalley PJ; Krauth-Siegel RL
    Mol Biochem Parasitol; 2009 Jan; 163(1):19-27. PubMed ID: 18848584
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Properties of trypanothione synthetase from Trypanosoma brucei.
    Oza SL; Ariyanayagam MR; Aitcheson N; Fairlamb AH
    Mol Biochem Parasitol; 2003 Sep; 131(1):25-33. PubMed ID: 12967709
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Trypanothione biosynthesis in Leishmania major.
    Oza SL; Shaw MP; Wyllie S; Fairlamb AH
    Mol Biochem Parasitol; 2005 Jan; 139(1):107-16. PubMed ID: 15610825
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The Trypanosoma cruzi enzyme TcGPXI is a glycosomal peroxidase and can be linked to trypanothione reduction by glutathione or tryparedoxin.
    Wilkinson SR; Meyer DJ; Taylor MC; Bromley EV; Miles MA; Kelly JM
    J Biol Chem; 2002 May; 277(19):17062-71. PubMed ID: 11842085
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Bis(glutathionyl)spermine and other novel trypanothione analogues in Trypanosoma cruzi.
    Ariyanayagam MR; Oza SL; Mehlert A; Fairlamb AH
    J Biol Chem; 2003 Jul; 278(30):27612-9. PubMed ID: 12750367
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ni2+-activated glyoxalase I from Escherichia coli: substrate specificity, kinetic isotope effects and evolution within the βαβββ superfamily.
    Mullings KY; Sukdeo N; Suttisansanee U; Ran Y; Honek JF
    J Inorg Biochem; 2012 Mar; 108():133-40. PubMed ID: 22173092
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The glyoxalase pathway in protozoan parasites.
    Sousa Silva M; Ferreira AE; Gomes R; Tomás AM; Ponces Freire A; Cordeiro C
    Int J Med Microbiol; 2012 Oct; 302(4-5):225-9. PubMed ID: 22901378
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Synthesis and evaluation of substrate analogue inhibitors of trypanothione reductase.
    Duyzend MH; Clark CT; Simmons SL; Johnson WB; Larson AM; Leconte AM; Wills AW; Ginder-Vogel M; Wilhelm AK; Czechowicz JA; Alberg DG
    J Enzyme Inhib Med Chem; 2012 Dec; 27(6):784-94. PubMed ID: 22085139
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Glutathione reductase turned into trypanothione reductase: structural analysis of an engineered change in substrate specificity.
    Stoll VS; Simpson SJ; Krauth-Siegel RL; Walsh CT; Pai EF
    Biochemistry; 1997 May; 36(21):6437-47. PubMed ID: 9174360
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cloning and characterization of glyoxalase I from soybean.
    Skipsey M; Andrews CJ; Townson JK; Jepson I; Edwards R
    Arch Biochem Biophys; 2000 Feb; 374(2):261-8. PubMed ID: 10666306
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Crystal structure of Trypanosoma cruzi trypanothione reductase in complex with trypanothione, and the structure-based discovery of new natural product inhibitors.
    Bond CS; Zhang Y; Berriman M; Cunningham ML; Fairlamb AH; Hunter WN
    Structure; 1999 Jan; 7(1):81-9. PubMed ID: 10368274
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Catalysis and structural properties of Leishmania infantum glyoxalase II: trypanothione specificity and phylogeny.
    Silva MS; Barata L; Ferreira AE; Romão S; Tomás AM; Freire AP; Cordeiro C
    Biochemistry; 2008 Jan; 47(1):195-204. PubMed ID: 18052346
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Stereospecificity of substrate usage by glyoxalase 1: nuclear magnetic resonance studies of kinetics and hemithioacetal substrate conformation.
    Rae C; O'Donoghue SI; Bubb WA; Kuchel PW
    Biochemistry; 1994 Mar; 33(12):3548-59. PubMed ID: 8142352
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.