These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

201 related articles for article (PubMed ID: 16958755)

  • 1. Analysis of mercuric reductase (merA) gene diversity in an anaerobic mercury-contaminated sediment enrichment.
    Ní Chadhain SM; Schaefer JK; Crane S; Zylstra GJ; Barkay T
    Environ Microbiol; 2006 Oct; 8(10):1746-52. PubMed ID: 16958755
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparative effects of mercury contamination and wastewater effluent input on Gram-negative merA gene abundance in mudflats of an anthropized estuary (Seine, France): a microcosm approach.
    Ramond JB; Berthe T; Duran R; Petit F
    Res Microbiol; 2009; 160(1):10-8. PubMed ID: 19013517
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Functional profiling of mercuric reductase (mer A) genes in biofilm communities of a technical scale biocatalyzer.
    Felske AD; Fehr W; Pauling BV; von Canstein H; Wagner-Döbler I
    BMC Microbiol; 2003 Oct; 3():22. PubMed ID: 14577839
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fish farming affects the abundance and diversity of the mercury resistance gene merA in marine sediments.
    Pitkänen LK; Tamminen M; Hynninen A; Karkman A; Corander J; Kotilainen A; Virta M
    Microbes Environ; 2011; 26(3):205-11. PubMed ID: 21558673
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Gram-positive merA gene in gram-negative oral and urine bacteria.
    Ojo KK; Tung D; Luis H; Bernardo M; Leitao J; Roberts MC
    FEMS Microbiol Lett; 2004 Sep; 238(2):411-6. PubMed ID: 15358427
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Characterization of a mercury-reducing Bacillus cereus strain isolated from the Pulicat Lake sediments, south east coast of India.
    Kannan SK; Mahadevan S; Krishnamoorthy R
    Arch Microbiol; 2006 Apr; 185(3):202-11. PubMed ID: 16447070
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mercury resistance in Sporosarcina sp. G3.
    Bafana A
    Biometals; 2011 Apr; 24(2):301-9. PubMed ID: 21181488
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Relationships between hydrosedimentary processes and occurrence of mercury-resistant bacteria (merA) in estuary mudflats (Seine, France).
    Ramond JB; Berthe T; Lafite R; Deloffre J; Ouddane B; Petit F
    Mar Pollut Bull; 2008 Jun; 56(6):1168-76. PubMed ID: 18381217
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A thermophilic bacterial origin and subsequent constraints by redox, light and salinity on the evolution of the microbial mercuric reductase.
    Barkay T; Kritee K; Boyd E; Geesey G
    Environ Microbiol; 2010 Nov; 12(11):2904-17. PubMed ID: 20545753
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Molecular studies of E. coli mercuric reductase gene (merA) and its impact on human health.
    Zeyaullah M; Nabi G; Malla R; Ali A
    Nepal Med Coll J; 2007 Sep; 9(3):182-5. PubMed ID: 18092437
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of long-term fertilization on the diversity of bacterial mercuric reductase gene in a Chinese upland soil.
    Liu YR; He JZ; Zhang LM; Zheng YM
    J Basic Microbiol; 2012 Feb; 52(1):35-42. PubMed ID: 22052505
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Development of transgenic yellow poplar for mercury phytoremediation.
    Rugh CL; Senecoff JF; Meagher RB; Merkle SA
    Nat Biotechnol; 1998 Oct; 16(10):925-8. PubMed ID: 9788347
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Detection, diversity and expression of aerobic bacterial arsenite oxidase genes.
    Inskeep WP; Macur RE; Hamamura N; Warelow TP; Ward SA; Santini JM
    Environ Microbiol; 2007 Apr; 9(4):934-43. PubMed ID: 17359265
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Molecular methods to detect and monitor dissimilatory arsenate-respiring bacteria (DARB) in sediments.
    Song B; Chyun E; Jaffé PR; Ward BB
    FEMS Microbiol Ecol; 2009 Apr; 68(1):108-17. PubMed ID: 19291024
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mercuric reductase activity of multiple heavy metal-resistant Lysinibacillus sphaericus G1.
    Bafana A; Chakrabarti T; Krishnamurthi K
    J Basic Microbiol; 2015 Mar; 55(3):285-92. PubMed ID: 24132860
    [TBL] [Abstract][Full Text] [Related]  

  • 16. High diversity of bacterial mercuric reductase genes from surface and sub-surface floodplain soil (Oak Ridge, USA).
    Oregaard G; Sørensen SJ
    ISME J; 2007 Sep; 1(5):453-67. PubMed ID: 18043664
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evolution of mercuric reductase (merA) gene: a case of horizontal gene transfer.
    Lal D; Lal R
    Mikrobiologiia; 2010; 79(4):524-31. PubMed ID: 21058506
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An initial characterization of the mercury resistance (mer) system of the thermophilic bacterium Thermus thermophilus HB27.
    Wang Y; Freedman Z; Lu-Irving P; Kaletsky R; Barkay T
    FEMS Microbiol Ecol; 2009 Jan; 67(1):118-29. PubMed ID: 19120462
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A stable mercury-containing complex of the organomercurial lyase MerB: catalysis, product release, and direct transfer to MerA.
    Benison GC; Di Lello P; Shokes JE; Cosper NJ; Scott RA; Legault P; Omichinski JG
    Biochemistry; 2004 Jul; 43(26):8333-45. PubMed ID: 15222746
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Diversity of ammonium-oxidizing bacteria in a granular sludge anaerobic ammonium-oxidizing (anammox) reactor.
    Quan ZX; Rhee SK; Zuo JE; Yang Y; Bae JW; Park JR; Lee ST; Park YH
    Environ Microbiol; 2008 Nov; 10(11):3130-9. PubMed ID: 18479446
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.