These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

95 related articles for article (PubMed ID: 16958904)

  • 1. The uptake of amino acids by the cyanobacterium Planktothrix rubescens is stimulated by light at low irradiances.
    Walsby AE; Jüttner F
    FEMS Microbiol Ecol; 2006 Oct; 58(1):14-22. PubMed ID: 16958904
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Suboptimal light conditions negatively affect the heterotrophy of Planktothrix rubescens but are beneficial for accompanying Limnohabitans spp.
    Horňák K; Zeder M; Blom JF; Posch T; Pernthaler J
    Environ Microbiol; 2012 Mar; 14(3):765-78. PubMed ID: 22070761
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Regulation of photosynthesis and oxygen consumption in a hypersaline cyanobacterial mat (Camargue, France) by irradiance, temperature and salinity.
    Wieland A; Kühl M
    FEMS Microbiol Ecol; 2006 Feb; 55(2):195-210. PubMed ID: 16420628
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The daily integral of growth by Planktothrix rubescens calculated from growth rate in culture and irradiance in Lake Zürich.
    Bright DI; Walsby AE
    New Phytol; 2000 May; 146(2):301-316. PubMed ID: 33862979
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Light-dependent growth rate determines changes in the population of Planktothrix rubescens over the annual cycle in Lake Zürich, Switzerland.
    Walsby AE; Schanz F
    New Phytol; 2002 Jun; 154(3):671-687. PubMed ID: 33873448
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparison of measured growth rates with those calculated from rates of photosynthesis in Planktothrix spp. isolated from Blelham Tarn, English Lake District.
    Davis PA; Walsby AE
    New Phytol; 2002 Nov; 156(2):225-239. PubMed ID: 33873282
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Transport of D-[1-14C]-amino acids into Chinese hamster ovary (CHO-K1) cells: implications for use of labeled d-amino acids as molecular imaging agents.
    Shikano N; Nakajima S; Kotani T; Ogura M; Sagara J; Iwamura Y; Yoshimoto M; Kubota N; Ishikawa N; Kawai K
    Nucl Med Biol; 2007 Aug; 34(6):659-65. PubMed ID: 17707806
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The Burgundy-blood phenomenon: a model of buoyancy change explains autumnal waterblooms by Planktothrix rubescens in Lake Zürich.
    Walsby AE; Schanz F; Schmid M
    New Phytol; 2006; 169(1):109-22. PubMed ID: 16390423
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Depth related amino acid uptake by Prochlorococcus cyanobacteria in the Southern Atlantic tropical gyre.
    Zubkov MV; Tarran GA; Fuchs BM
    FEMS Microbiol Ecol; 2004 Nov; 50(3):153-61. PubMed ID: 19712356
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Stratification by cyanobacteria in lakes: a dynamic buoyancy model indicates size limitations met by Planktothrix rubescens filaments.
    Walsby AE
    New Phytol; 2005 Nov; 168(2):365-76. PubMed ID: 16219076
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Buoyancy regulation and vertical distribution of Planktothrix mougeotii in the simulator experiments].
    Tang ZB; Chu ZS; Jin XC; Zeng QR
    Huan Jing Ke Xue; 2008 Jun; 29(6):1513-7. PubMed ID: 18763493
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Amino acid uptake and energy coupling dependent on photosynthesis in Anacystis nidulans.
    Lee-Kaden J; Simonis W
    J Bacteriol; 1982 Jul; 151(1):229-36. PubMed ID: 6806240
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The Red Harmful Plague in Times of Climate Change: Blooms of the Cyanobacterium
    Knapp D; Fernández Castro B; Marty D; Loher E; Köster O; Wüest A; Posch T
    Front Microbiol; 2021; 12():705914. PubMed ID: 34512582
    [No Abstract]   [Full Text] [Related]  

  • 14. The role of photosynthesis and food uptake for the growth of marine mixotrophic dinoflagellates.
    Hansen PJ
    J Eukaryot Microbiol; 2011; 58(3):203-14. PubMed ID: 21435078
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Light enhanced amino acid uptake by dominant bacterioplankton groups in surface waters of the Atlantic Ocean.
    Mary I; Tarran GA; Warwick PE; Terry MJ; Scanlan DJ; Burkill PH; Zubkov MV
    FEMS Microbiol Ecol; 2008 Jan; 63(1):36-45. PubMed ID: 18081589
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of individual amino acids and glucose on activation and germination of Rhizopus oligosporus sporangiospores in tempe starter.
    Thanh NV; Rombouts FM; Nout MJ
    J Appl Microbiol; 2005; 99(5):1204-14. PubMed ID: 16238751
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Allelopathic growth inhibition by the toxic, bloom-forming cyanobacterium Planktothrix rubescens.
    Oberhaus L; Briand JF; Humbert JF
    FEMS Microbiol Ecol; 2008 Nov; 66(2):243-9. PubMed ID: 18752621
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A Dhb-microcystin from the filamentous cyanobacterium Planktothrix rubescens.
    Sano T; Takagi H; Kaya K
    Phytochemistry; 2004 Jul; 65(14):2159-62. PubMed ID: 15279989
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Uptake of dissolved free amino acids by the scleractinian coral Stylophora pistillata.
    Grover R; Maguer JF; Allemand D; Ferrier-Pagès C
    J Exp Biol; 2008 Mar; 211(Pt 6):860-5. PubMed ID: 18310111
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Growth enhancing effect of exogenous glycine and characterization of its uptake in halotolerant cyanobacterium Aphanothece halophytica.
    Bualuang A; Incharoensakdi A
    World J Microbiol Biotechnol; 2015 Feb; 31(2):379-84. PubMed ID: 25536900
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.