BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

193 related articles for article (PubMed ID: 16959217)

  • 1. Electrical behavior and pore accumulation in a multicellular model for conventional and supra-electroporation.
    Gowrishankar TR; Weaver JC
    Biochem Biophys Res Commun; 2006 Oct; 349(2):643-53. PubMed ID: 16959217
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Model of creation and evolution of stable electropores for DNA delivery.
    Smith KC; Neu JC; Krassowska W
    Biophys J; 2004 May; 86(5):2813-26. PubMed ID: 15111399
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Emergence of a large pore subpopulation during electroporating pulses.
    Smith KC; Son RS; Gowrishankar TR; Weaver JC
    Bioelectrochemistry; 2014 Dec; 100():3-10. PubMed ID: 24290730
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Towards solid tumor treatment by irreversible electroporation: intrinsic redistribution of fields and currents in tissue.
    Esser AT; Smith KC; Gowrishankar TR; Weaver JC
    Technol Cancer Res Treat; 2007 Aug; 6(4):261-74. PubMed ID: 17668933
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cell electrofusion based on nanosecond/microsecond pulsed electric fields.
    Li C; Ke Q; Yao C; Mi Y; Liu H; Lv Y; Yao C
    PLoS One; 2018; 13(5):e0197167. PubMed ID: 29795594
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Process Analysis and Parameter Selection of Cardiomyocyte Electroporation Based on the Finite Element Method.
    Zhang H; Ji X; Zang L; Yan S; Wu X
    Cardiovasc Eng Technol; 2024 Feb; 15(1):22-38. PubMed ID: 37919538
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The effects of intense submicrosecond electrical pulses on cells.
    Deng J; Schoenbach KH; Buescher ES; Hair PS; Fox PM; Beebe SJ
    Biophys J; 2003 Apr; 84(4):2709-14. PubMed ID: 12668479
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Modeling electroporation in a single cell.
    Krassowska W; Filev PD
    Biophys J; 2007 Jan; 92(2):404-17. PubMed ID: 17056739
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Modeling a Conventional Electroporation Pulse Train: Decreased Pore Number, Cumulative Calcium Transport and an Example of Electrosensitization.
    Son RS; Gowrishankar TR; Smith KC; Weaver JC
    IEEE Trans Biomed Eng; 2016 Mar; 63(3):571-80. PubMed ID: 26302502
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Towards solid tumor treatment by nanosecond pulsed electric fields.
    Esser AT; Smith KC; Gowrishankar TR; Weaver JC
    Technol Cancer Res Treat; 2009 Aug; 8(4):289-306. PubMed ID: 19645522
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Basic features of a cell electroporation model: illustrative behavior for two very different pulses.
    Son RS; Smith KC; Gowrishankar TR; Vernier PT; Weaver JC
    J Membr Biol; 2014 Dec; 247(12):1209-28. PubMed ID: 25048527
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Oxidative Effects during Irreversible Electroporation of Melanoma Cells-In Vitro Study.
    Szlasa W; Kiełbik A; Szewczyk A; Rembiałkowska N; Novickij V; Tarek M; Saczko J; Kulbacka J
    Molecules; 2020 Dec; 26(1):. PubMed ID: 33396317
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Self-consistent simulations of electroporation dynamics in biological cells subjected to ultrashort electrical pulses.
    Joshi RP; Hu Q; Aly R; Schoenbach KH; Hjalmarson HP
    Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Jul; 64(1 Pt 1):011913. PubMed ID: 11461294
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The estimation of pore size distribution of electroporated MCF-7 cell membrane.
    Eşmekaya MA; Gürsoy G; Coşkun A
    Electromagn Biol Med; 2024 Jun; ():1-11. PubMed ID: 38900674
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Diffuse, non-polar electropermeabilization and reduced propidium uptake distinguish the effect of nanosecond electric pulses.
    Semenov I; Zemlin C; Pakhomova ON; Xiao S; Pakhomov AG
    Biochim Biophys Acta; 2015 Oct; 1848(10 Pt A):2118-25. PubMed ID: 26112464
    [TBL] [Abstract][Full Text] [Related]  

  • 16. In-vitro bipolar nano- and microsecond electro-pulse bursts for irreversible electroporation therapies.
    Sano MB; Arena CB; DeWitt MR; Saur D; Davalos RV
    Bioelectrochemistry; 2014 Dec; 100():69-79. PubMed ID: 25131187
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Membrane electroporation: The absolute rate equation and nanosecond time scale pore creation.
    Vasilkoski Z; Esser AT; Gowrishankar TR; Weaver JC
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Aug; 74(2 Pt 1):021904. PubMed ID: 17025469
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Tissue electroporation: quantification and analysis of heterogeneous transport in multicellular environments.
    Canatella PJ; Black MM; Bonnichsen DM; McKenna C; Prausnitz MR
    Biophys J; 2004 May; 86(5):3260-8. PubMed ID: 15111439
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Quantification of cell membrane permeability induced by monopolar and high-frequency bipolar bursts of electrical pulses.
    Sweeney DC; Reberšek M; Dermol J; Rems L; Miklavčič D; Davalos RV
    Biochim Biophys Acta; 2016 Nov; 1858(11):2689-2698. PubMed ID: 27372268
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Subnanosecond electric pulses cause membrane permeabilization and cell death.
    Xiao S; Guo S; Nesin V; Heller R; Schoenbach KH
    IEEE Trans Biomed Eng; 2011 May; 58(5):1239-45. PubMed ID: 21303739
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.