BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

251 related articles for article (PubMed ID: 16959312)

  • 21. Monolayer-protected gold nanoparticles by the self-assembly of micellar poly(ethylene oxide)-b-poly(epsilon-caprolactone) block copolymer.
    Azzam T; Eisenberg A
    Langmuir; 2007 Feb; 23(4):2126-32. PubMed ID: 17279704
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Synthesis and characterization of grafted thermosensitive hydrogels for heating activated controlled release.
    Ankareddi I; Brazel CS
    Int J Pharm; 2007 May; 336(2):241-7. PubMed ID: 17234371
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Synthesis and in vitro drug release behavior of amphiphilic triblock copolymer nanoparticles based on poly (ethylene glycol) and polycaprolactone.
    Zhang Y; Zhuo RX
    Biomaterials; 2005 Nov; 26(33):6736-42. PubMed ID: 15935469
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Synthesis, characterization and controlled drug release of thermosensitive IPN-PNIPAAm hydrogels.
    Zhang XZ; Wu DQ; Chu CC
    Biomaterials; 2004 Aug; 25(17):3793-805. PubMed ID: 15020155
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Magnetic drug-targeting carrier encapsulated with thermosensitive smart polymer: core-shell nanoparticle carrier and drug release response.
    Zhang J; Misra RD
    Acta Biomater; 2007 Nov; 3(6):838-50. PubMed ID: 17638599
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Functionalized thermoresponsive micelles self-assembled from biotin-PEG-b-P(NIPAAm-co-HMAAm)-b-PMMA for tumor cell target.
    Cheng C; Wei H; Zhu JL; Chang C; Cheng H; Li C; Cheng SX; Zhang XZ; Zhuo RX
    Bioconjug Chem; 2008 Jun; 19(6):1194-201. PubMed ID: 18476730
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Superparamagnetic iron oxide nanoparticles encapsulated in biodegradable thermosensitive polymeric micelles: toward a targeted nanomedicine suitable for image-guided drug delivery.
    Talelli M; Rijcken CJ; Lammers T; Seevinck PR; Storm G; van Nostrum CF; Hennink WE
    Langmuir; 2009 Feb; 25(4):2060-7. PubMed ID: 19166276
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Spontaneous generation of amphiphilic block copolymer micelles with multiple morphologies through interfacial Instabilities.
    Zhu J; Hayward RC
    J Am Chem Soc; 2008 Jun; 130(23):7496-502. PubMed ID: 18479130
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Physicochemical characterization of polymeric micelles constructed from novel amphiphilic polyphosphazene with poly(N-isopropylacrylamide) and ethyl 4-aminobenzoate as side groups.
    Zhang JX; Qiu LY; Jin Y; Zhu KJ
    Colloids Surf B Biointerfaces; 2005 Jul; 43(3-4):123-30. PubMed ID: 15925499
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Preparation of an amphiphilic triblock copolymer with pH- and thermo-responsiveness and self-assembled micelles applied to drug release.
    Qu T; Wang A; Yuan J; Gao Q
    J Colloid Interface Sci; 2009 Aug; 336(2):865-71. PubMed ID: 19464019
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Synthesis and micellization of amphiphilic brush-coil block copolymer based on poly(epsilon-caprolactone) and PEGylated polyphosphoester.
    Du JZ; Chen DP; Wang YC; Xiao CS; Lu YJ; Wang J; Zhang GZ
    Biomacromolecules; 2006 Jun; 7(6):1898-903. PubMed ID: 16768412
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Bioconjugation of biotin to the interfaces of polymeric micelles via in situ click chemistry.
    Wang X; Liu L; Luo Y; Zhao H
    Langmuir; 2009 Jan; 25(2):744-50. PubMed ID: 19105785
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Biodegradable and biocompatible multi-arm star amphiphilic block copolymer as a carrier for hydrophobic drug delivery.
    Aryal S; Prabaharan M; Pilla S; Gong S
    Int J Biol Macromol; 2009 May; 44(4):346-52. PubMed ID: 19428465
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Poly(N-isopropylacrylamide-co-acrylamide) cross-linked thermoresponsive microspheres obtained from preformed polymers: Influence of the physico-chemical characteristics of drugs on their release profiles.
    Fundueanu G; Constantin M; Ascenzi P
    Acta Biomater; 2009 Jan; 5(1):363-73. PubMed ID: 18723416
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Controlling the aggregation of conjugates of streptavidin with smart block copolymers prepared via the RAFT copolymerization technique.
    Kulkarni S; Schilli C; Grin B; Müller AH; Hoffman AS; Stayton PS
    Biomacromolecules; 2006 Oct; 7(10):2736-41. PubMed ID: 17025347
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Amine-containing core-shell nanoparticles as potential drug carriers for intracellular delivery.
    Feng M; Li P
    J Biomed Mater Res A; 2007 Jan; 80(1):184-93. PubMed ID: 17019724
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Intelligent crew-cut aggregates formed by thermosensitive block copolymers and their multiple morphologies.
    Chen X; Ding X; Zheng Z; Peng Y
    Macromol Biosci; 2005 Feb; 5(2):157-63. PubMed ID: 15719431
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Inner core segment design for drug delivery control of thermo-responsive polymeric micelles.
    Chung JE; Yokoyama M; Okano T
    J Control Release; 2000 Mar; 65(1-2):93-103. PubMed ID: 10699274
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Synthesis of amphiphilic poly(tetraethylene glycol succinate) and the thermosensitivity of its aggregation in water.
    Chen S; Wang Y; Fan Y; Ma J
    J Biomed Mater Res A; 2009 Mar; 88(3):769-77. PubMed ID: 18357563
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Thermo-induced formation of unimolecular and multimolecular micelles from novel double hydrophilic multiblock copolymers of N,N-dimethylacrylamide and N-isopropylacrylamide.
    Zhou Y; Jiang K; Song Q; Liu S
    Langmuir; 2007 Dec; 23(26):13076-84. PubMed ID: 18027977
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.