BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

210 related articles for article (PubMed ID: 16959319)

  • 1. Enzymatic and spectroscopic studies on the activation or inhibition effects by substituted phenolic compounds in the oxidation of aryldiamines and catechols catalyzed by Rhus vernicifera laccase.
    Casella L; Gullotti M; Monzani E; Santagostini L; Zoppellaro G; Sakurai T
    J Inorg Biochem; 2006 Dec; 100(12):2127-39. PubMed ID: 16959319
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Inhibition of ascorbate oxidase by phenolic compounds. Enzymatic and spectroscopic studies.
    Gaspard S; Monzani E; Casella L; Gullotti M; Maritano S; Marchesini A
    Biochemistry; 1997 Apr; 36(16):4852-9. PubMed ID: 9125505
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Spectroscopic studies of perturbed T1 Cu sites in the multicopper oxidases Saccharomyces cerevisiae Fet3p and Rhus vernicifera laccase: allosteric coupling between the T1 and trinuclear Cu sites.
    Augustine AJ; Kragh ME; Sarangi R; Fujii S; Liboiron BD; Stoj CS; Kosman DJ; Hodgson KO; Hedman B; Solomon EI
    Biochemistry; 2008 Feb; 47(7):2036-45. PubMed ID: 18197705
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Oxidative transformation of phenols in aqueous mixtures.
    Gianfreda L; Sannino F; Rao MA; Bollag JM
    Water Res; 2003 Jul; 37(13):3205-15. PubMed ID: 14509708
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Electrochemical characterization of purified Rhus vernicifera laccase: voltammetric evidence for a sequential four-electron transfer.
    Johnson DL; Thompson JL; Brinkmann SM; Schuller KA; Martin LL
    Biochemistry; 2003 Sep; 42(34):10229-37. PubMed ID: 12939151
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enzymatic dehydrogenative polymerization of urushiols in fresh exudates from the lacquer tree, Rhus vernicifera DC.
    Harigaya S; Honda T; Rong L; Miyakoshi T; Chen CL
    J Agric Food Chem; 2007 Mar; 55(6):2201-8. PubMed ID: 17319686
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of organic solvents on the activity of free and immobilised laccase from Rhus vernicifera.
    Wan YY; Lu R; Xiao L; Du YM; Miyakoshi T; Chen CL; Knill CJ; Kennedy JF
    Int J Biol Macromol; 2010 Nov; 47(4):488-95. PubMed ID: 20647020
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The role of Glu498 in the dioxygen reactivity of CotA-laccase from Bacillus subtilis.
    Chen Z; Durão P; Silva CS; Pereira MM; Todorovic S; Hildebrandt P; Bento I; Lindley PF; Martins LO
    Dalton Trans; 2010 Mar; 39(11):2875-82. PubMed ID: 20200715
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mechanism of monolignol biotransformation by Rhus laccases in water-miscible organic solutions.
    Wan YY; Miyakoshi T; Du YM; Chen LJ; Hao JM; Kennedy JF
    Int J Biol Macromol; 2012 Apr; 50(3):530-3. PubMed ID: 22289862
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Identification of a radical intermediate in the enzymatic reduction of oxygen by a small laccase.
    Tepper AW; Milikisyants S; Sottini S; Vijgenboom E; Groenen EJ; Canters GW
    J Am Chem Soc; 2009 Aug; 131(33):11680-2. PubMed ID: 19645472
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An alkali-stable enzyme with laccase activity from entophytic fungus and the enzymatic modification of alkali lignin.
    Weihua Q; Hongzhang C
    Bioresour Technol; 2008 Sep; 99(13):5480-4. PubMed ID: 18096384
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An assessment of the relative contributions of redox and steric issues to laccase specificity towards putative substrates.
    Tadesse MA; D'Annibale A; Galli C; Gentili P; Sergi F
    Org Biomol Chem; 2008 Mar; 6(5):868-78. PubMed ID: 18292878
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Enzymatic oxidation of manganese ions catalysed by laccase.
    Gorbacheva M; Morozova O; Shumakovich G; Streltsov A; Shleev S; Yaropolov A
    Bioorg Chem; 2009 Feb; 37(1):1-5. PubMed ID: 18976793
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Modified microperoxidases exhibit different reactivity towards phenolic substrates.
    Dallacosta C; Casella L; Monzani E
    Chembiochem; 2004 Dec; 5(12):1692-9. PubMed ID: 15532028
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Oxidation of phenolic compounds by lactoperoxidase. Evidence for the presence of a low-potential compound II during catalytic turnover.
    Monzani E; Gatti AL; Profumo A; Casella L; Gullotti M
    Biochemistry; 1997 Feb; 36(7):1918-26. PubMed ID: 9048579
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Basic and applied features of multicopper oxidases, CueO, bilirubin oxidase, and laccase.
    Sakurai T; Kataoka K
    Chem Rec; 2007; 7(4):220-9. PubMed ID: 17663447
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Intramolecular electron transfer in laccases.
    Farver O; Wherland S; Koroleva O; Loginov DS; Pecht I
    FEBS J; 2011 Sep; 278(18):3463-71. PubMed ID: 21790996
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structure-function studies of a Melanocarpus albomyces laccase suggest a pathway for oxidation of phenolic compounds.
    Kallio JP; Auer S; Jänis J; Andberg M; Kruus K; Rouvinen J; Koivula A; Hakulinen N
    J Mol Biol; 2009 Oct; 392(4):895-909. PubMed ID: 19563811
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Study on the interaction between Pd(II) and Rhus vernicifera laccase].
    Tu C; Liang H; Wang G
    Guang Pu Xue Yu Guang Pu Fen Xi; 2001 Aug; 21(4):524-6. PubMed ID: 12945281
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Oxidative transformation of natural and synthetic phenolic mixtures by Trametes versicolor laccase.
    Canfora L; Iamarino G; Rao MA; Gianfreda L
    J Agric Food Chem; 2008 Feb; 56(4):1398-407. PubMed ID: 18205305
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.