These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

86 related articles for article (PubMed ID: 16959428)

  • 1. Transmission microscopy without lenses for objects of unlimited size.
    Rodenburg JM; Hurst AC; Cullis AG
    Ultramicroscopy; 2007; 107(2-3):227-31. PubMed ID: 16959428
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Wet STEM: a new development in environmental SEM for imaging nano-objects included in a liquid phase.
    Bogner A; Thollet G; Basset D; Jouneau PH; Gauthier C
    Ultramicroscopy; 2005 Oct; 104(3-4):290-301. PubMed ID: 15990230
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Phase measurement of atomic resolution image using transport of intensity equation.
    Ishizuka K; Allman B
    J Electron Microsc (Tokyo); 2005 Jun; 54(3):191-7. PubMed ID: 16076863
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evaluation of hologram imaging by ray tracing.
    Abramowitz IA
    Appl Opt; 1969 Feb; 8(2):403-10. PubMed ID: 20072235
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Focussed ion beam machined cantilever aperture probes for near-field optical imaging.
    Jin EX; Xu X
    J Microsc; 2008 Mar; 229(Pt 3):503-11. PubMed ID: 18331502
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An annealing algorithm to correct positioning errors in ptychography.
    Maiden AM; Humphry MJ; Sarahan MC; Kraus B; Rodenburg JM
    Ultramicroscopy; 2012 Sep; 120():64-72. PubMed ID: 22813888
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nanoscale chemical imaging of a working catalyst by scanning transmission X-ray microscopy.
    de Smit E; Swart I; Creemer JF; Hoveling GH; Gilles MK; Tyliszczak T; Kooyman PJ; Zandbergen HW; Morin C; Weckhuysen BM; de Groot FM
    Nature; 2008 Nov; 456(7219):222-5. PubMed ID: 19005551
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Contrast enhancement in the phase plate transmission electron microscopy using an objective lens with a long focal length.
    Minoda H; Okabe T; Iijima H
    J Electron Microsc (Tokyo); 2011; 60(5):337-43. PubMed ID: 21880612
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Image acquisition with immersion objective lenses using electrons emitted with several tenths of an electron volt energies: towards high spatial resolution ESCA analysis.
    Bernheim M
    Ultramicroscopy; 2006 Mar; 106(4-5):398-412. PubMed ID: 16413678
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Optical imaging featuring both long working distance and high spatial resolution by correcting the aberration of a large aperture lens.
    Choi C; Song KD; Kang S; Park JS; Choi W
    Sci Rep; 2018 Jun; 8(1):9165. PubMed ID: 29907794
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Specimen-induced distortions in light microscopy.
    Schwertner M; Booth MJ; Wilson T
    J Microsc; 2007 Oct; 228(Pt 1):97-102. PubMed ID: 17910702
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Imaging with neutral atoms: a new matter-wave microscope.
    Koch M; Rehbein S; Schmahl G; Reisinger T; Bracco G; Ernst WE; Holst B
    J Microsc; 2008 Jan; 229(Pt 1):1-5. PubMed ID: 18173637
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mirror lenses in light microscopy--theoretical considerations and practical implications.
    Piper J
    Microsc Res Tech; 2010 Jul; 73(7):681-93. PubMed ID: 19941290
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Image contrast in X-ray reflection interface microscopy: comparison of data with model calculations and simulations.
    Fenter P; Park C; Kohli V; Zhang Z
    J Synchrotron Radiat; 2008 Nov; 15(Pt 6):558-71. PubMed ID: 18955761
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Far-field optical hyperlens magnifying sub-diffraction-limited objects.
    Liu Z; Lee H; Xiong Y; Sun C; Zhang X
    Science; 2007 Mar; 315(5819):1686. PubMed ID: 17379801
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Imaging of radiation-sensitive samples in transmission electron microscopes equipped with Zernike phase plates.
    Malac M; Beleggia M; Egerton R; Zhu Y
    Ultramicroscopy; 2008 Jan; 108(2):126-40. PubMed ID: 17509765
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Near-field microscopy through a SiC superlens.
    Taubner T; Korobkin D; Urzhumov Y; Shvets G; Hillenbrand R
    Science; 2006 Sep; 313(5793):1595. PubMed ID: 16973871
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Atomic force microscopy : theory and practice in bacteria morphostructural analysis.
    Braga PC; Ricci D
    Methods Mol Med; 2001; 48():199-207. PubMed ID: 21374419
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Optimizing phase contrast in transmission electron microscopy with an electrostatic (Boersch) phase plate.
    Majorovits E; Barton B; Schultheiss K; Pérez-Willard F; Gerthsen D; Schröder RR
    Ultramicroscopy; 2007; 107(2-3):213-26. PubMed ID: 16949755
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Single particle analysis based on Zernike phase contrast transmission electron microscopy.
    Danev R; Nagayama K
    J Struct Biol; 2008 Feb; 161(2):211-8. PubMed ID: 18082423
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.