BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

249 related articles for article (PubMed ID: 16959449)

  • 21. Efficient calculation of the Gauss-Newton approximation of the Hessian matrix in neural networks.
    Fairbank M; Alonso E
    Neural Comput; 2012 Mar; 24(3):607-10. PubMed ID: 22168563
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Evaluation of PCA and Gamma test techniques on ANN operation for weekly solid waste prediction.
    Noori R; Karbassi A; Salman Sabahi M
    J Environ Manage; 2010; 91(3):767-71. PubMed ID: 19913989
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Response surface methodology in the optimization of chitosan-Ca pectinate bead formulations.
    Mennini N; Furlanetto S; Maestrelli F; Pinzauti S; Mura P
    Eur J Pharm Sci; 2008 Nov; 35(4):318-25. PubMed ID: 18782615
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Training artificial neural networks directly on the concordance index for censored data using genetic algorithms.
    Kalderstam J; Edén P; Bendahl PO; Strand C; Fernö M; Ohlsson M
    Artif Intell Med; 2013 Jun; 58(2):125-32. PubMed ID: 23582884
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Biological engineering applications of feedforward neural networks designed and parameterized by genetic algorithms.
    Ferentinos KP
    Neural Netw; 2005 Sep; 18(7):934-50. PubMed ID: 15963690
    [TBL] [Abstract][Full Text] [Related]  

  • 26. QSAR study of heparanase inhibitors activity using artificial neural networks and Levenberg-Marquardt algorithm.
    Jalali-Heravi M; Asadollahi-Baboli M; Shahbazikhah P
    Eur J Med Chem; 2008 Mar; 43(3):548-56. PubMed ID: 17602800
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Speeding up backpropagation using multiobjective evolutionary algorithms.
    Abbass HA
    Neural Comput; 2003 Nov; 15(11):2705-26. PubMed ID: 14577859
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Artificial neural network based soft estimator for estimation of transducer static nonlinearity.
    Singh AP; Kamal TS; Kumar S
    Int J Neural Syst; 2004 Aug; 14(4):237-46. PubMed ID: 15372701
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The use of artificial neural network (ANN) for modeling of COD removal from antibiotic aqueous solution by the Fenton process.
    Elmolla ES; Chaudhuri M; Eltoukhy MM
    J Hazard Mater; 2010 Jul; 179(1-3):127-34. PubMed ID: 20307930
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Artificial neural network-genetic algorithm based optimization for the adsorption of methylene blue and brilliant green from aqueous solution by graphite oxide nanoparticle.
    Ghaedi M; Zeinali N; Ghaedi AM; Teimuori M; Tashkhourian J
    Spectrochim Acta A Mol Biomol Spectrosc; 2014 May; 125():264-77. PubMed ID: 24556135
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Robust adaptive gradient-descent training algorithm for recurrent neural networks in discrete time domain.
    Song Q; Wu Y; Soh YC
    IEEE Trans Neural Netw; 2008 Nov; 19(11):1841-53. PubMed ID: 18990640
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Application of artificial neural network for yield prediction of lipase-catalyzed synthesis of dioctyl adipate.
    Abdul Rahman MB; Chaibakhsh N; Basri M; Salleh AB; Abdul Rahman RN
    Appl Biochem Biotechnol; 2009 Sep; 158(3):722-35. PubMed ID: 19132557
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The superior fault tolerance of artificial neural network training with a fault/noise injection-based genetic algorithm.
    Su F; Yuan P; Wang Y; Zhang C
    Protein Cell; 2016 Oct; 7(10):735-748. PubMed ID: 27502185
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Efficient training algorithms for a class of shunting inhibitory convolutional neural networks.
    Tivive FH; Bouzerdoum A
    IEEE Trans Neural Netw; 2005 May; 16(3):541-56. PubMed ID: 15940985
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Extraction of Phenolic Compounds with Antioxidant Activity from Strawberries: Modelling with Artificial Neural Networks (ANNs).
    Golpour I; Ferrão AC; Gonçalves F; Correia PMR; Blanco-Marigorta AM; Guiné RPF
    Foods; 2021 Sep; 10(9):. PubMed ID: 34574338
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Neural networks convergence using physicochemical data.
    Karelson M; Dobchev DA; Kulshyn OV; Katritzky AR
    J Chem Inf Model; 2006; 46(5):1891-7. PubMed ID: 16995718
    [TBL] [Abstract][Full Text] [Related]  

  • 37.
    Ogunbo JN; Alagbe OA; Oladapo MI; Shin C
    Heliyon; 2020 Jun; 6(6):e04108. PubMed ID: 32566777
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The use of artificial neural networks for the selection of the most appropriate formulation and processing variables in order to predict the in vitro dissolution of sustained release minitablets.
    Leane MM; Cumming I; Corrigan OI
    AAPS PharmSciTech; 2003; 4(2):E26. PubMed ID: 12916908
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Comparison of four artificial neural network software programs used to predict the in vitro dissolution of controlled-release tablets.
    Chen Y; Jiao T; McCall TW; Baichwal AR; Meyer MC
    Pharm Dev Technol; 2002; 7(3):373-9. PubMed ID: 12229268
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Artificial neural network model for earthquake prediction with radon monitoring.
    Külahci F; Inceöz M; Doğru M; Aksoy E; Baykara O
    Appl Radiat Isot; 2009 Jan; 67(1):212-9. PubMed ID: 18789709
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.