BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 16959468)

  • 1. Evaluation of a proposed in vitro test strategy using neuronal and non-neuronal cell systems for detecting neurotoxicity.
    Gartlon J; Kinsner A; Bal-Price A; Coecke S; Clothier RH
    Toxicol In Vitro; 2006 Dec; 20(8):1569-81. PubMed ID: 16959468
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Neuronal models for evaluation of proliferation in vitro using high content screening.
    Mundy WR; Radio NM; Freudenrich TM
    Toxicology; 2010 Apr; 270(2-3):121-30. PubMed ID: 20149836
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Rat cortical neuron cultures: an in vitro model for differentiating mechanisms of chemically induced neurotoxicity.
    Schmuck G; Ahr HJ; Schlüter G
    In Vitr Mol Toxicol; 2000; 13(1):37-50. PubMed ID: 10900406
    [TBL] [Abstract][Full Text] [Related]  

  • 4. In vitro developmental neurotoxicity (DNT) testing: relevant models and endpoints.
    Bal-Price AK; Hogberg HT; Buzanska L; Lenas P; van Vliet E; Hartung T
    Neurotoxicology; 2010 Sep; 31(5):545-54. PubMed ID: 19969020
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evaluation of the importance of astrocytes when screening for acute toxicity in neuronal cell systems.
    Woehrling EK; Hill EJ; Coleman MD
    Neurotox Res; 2010 Feb; 17(2):103-13. PubMed ID: 19593679
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Neuronal in vitro models for the estimation of acute systemic toxicity.
    Forsby A; Bal-Price AK; Camins A; Coecke S; Fabre N; Gustafsson H; Honegger P; Kinsner-Ovaskainen A; Pallas M; Rimbau V; Rodríguez-Farré E; Suñol C; Vericat JA; Zurich MG
    Toxicol In Vitro; 2009 Dec; 23(8):1564-9. PubMed ID: 19615435
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The DNT-EST: a predictive embryonic stem cell-based assay for developmental neurotoxicity testing in vitro.
    Hayess K; Riebeling C; Pirow R; Steinfath M; Sittner D; Slawik B; Luch A; Seiler AE
    Toxicology; 2013 Dec; 314(1):135-47. PubMed ID: 24096155
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evaluation of a human neurite growth assay as specific screen for developmental neurotoxicants.
    Krug AK; Balmer NV; Matt F; Schönenberger F; Merhof D; Leist M
    Arch Toxicol; 2013 Dec; 87(12):2215-31. PubMed ID: 23670202
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Relevance of in vitro neurotoxicity testing for regulatory requirements: challenges to be considered.
    Bal-Price AK; Hogberg HT; Buzanska L; Coecke S
    Neurotoxicol Teratol; 2010; 32(1):36-41. PubMed ID: 19150401
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Single-cell ELISA and flow cytometry as methods for highlighting potential neuronal and astrocytic toxicant specificity.
    Woehrling EK; Hill EJ; Torr EE; Coleman MD
    Neurotox Res; 2011 Apr; 19(3):472-83. PubMed ID: 20552314
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Development of a neurotoxicity test-system, using human post-mitotic, astrocytic and neuronal cell lines in co-culture.
    Woehrling EK; Hill EJ; Coleman MD
    Toxicol In Vitro; 2007 Oct; 21(7):1241-6. PubMed ID: 17566694
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Multiparametric High Content Analysis for assessment of neurotoxicity in differentiated neuronal cell lines and human embryonic stem cell-derived neurons.
    Wilson MS; Graham JR; Ball AJ
    Neurotoxicology; 2014 May; 42():33-48. PubMed ID: 24705302
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Exacerbation of excitotoxic neuronal death induced during mitochondrial inhibition in vivo: relation to energy imbalance or ATP depletion?
    Del Río P; Montiel T; Chagoya V; Massieu L
    Neuroscience; 2007 Jun; 146(4):1561-70. PubMed ID: 17490821
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Possible developments in neurotoxicity testing in vitro.
    Harvey AL
    Xenobiotica; 1988 Jun; 18(6):625-32. PubMed ID: 3420941
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fine ultrastructure and biochemistry of PC12 cells: a comparative approach to understand neurotoxicity.
    Fornai F; Lenzi P; Lazzeri G; Ferrucci M; Fulceri F; Giorgi FS; Falleni A; Ruggieri S; Paparelli A
    Brain Res; 2007 Jan; 1129(1):174-90. PubMed ID: 17157274
    [TBL] [Abstract][Full Text] [Related]  

  • 16. In vitro cytotoxicity assessment of the biocidal agents sodium o-phenylphenol, sodium o-benzyl-p-chlorophenol, and sodium p-tertiary amylphenol using established fish cell lines.
    Davoren M; Fogarty AM
    Toxicol In Vitro; 2006 Oct; 20(7):1190-201. PubMed ID: 16678383
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The use of Fluoro-Jade in primary neuronal cell cultures.
    Schmuck G; Kahl R
    Arch Toxicol; 2009 Apr; 83(4):397-403. PubMed ID: 18815771
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Studies with neuronal cells: From basic studies of mechanisms of neurotoxicity to the prediction of chemical toxicity.
    Suñol C; Babot Z; Fonfría E; Galofré M; García D; Herrera N; Iraola S; Vendrell I
    Toxicol In Vitro; 2008 Aug; 22(5):1350-5. PubMed ID: 18467072
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Neurotoxic mode of action of artemisinin.
    Schmuck G; Roehrdanz E; Haynes RK; Kahl R
    Antimicrob Agents Chemother; 2002 Mar; 46(3):821-7. PubMed ID: 11850267
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Safety and nutritional assessment of GM plants and derived food and feed: the role of animal feeding trials.
    EFSA GMO Panel Working Group on Animal Feeding Trials
    Food Chem Toxicol; 2008 Mar; 46 Suppl 1():S2-70. PubMed ID: 18328408
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.