These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 16959632)

  • 1. Disruptive contrast in animal camouflage.
    Stevens M; Cuthill IC; Windsor AM; Walker HJ
    Proc Biol Sci; 2006 Oct; 273(1600):2433-8. PubMed ID: 16959632
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Camouflage using three-dimensional surface disruption.
    King J; Hemmi JM; Kelley JL
    Biol Lett; 2023 Aug; 19(8):20220596. PubMed ID: 37528728
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Optimal background matching camouflage.
    Michalis C; Scott-Samuel NE; Gibson DP; Cuthill IC
    Proc Biol Sci; 2017 Jul; 284(1858):. PubMed ID: 28701559
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Background complexity can mitigate poor camouflage.
    Rowe ZW; Austin DJD; Chippington N; Flynn W; Starkey F; Wightman EJ; Scott-Samuel NE; Cuthill IC
    Proc Biol Sci; 2021 Nov; 288(1963):20212029. PubMed ID: 34814749
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Background matching and disruptive coloration as habitat-specific strategies for camouflage.
    Price N; Green S; Troscianko J; Tregenza T; Stevens M
    Sci Rep; 2019 May; 9(1):7840. PubMed ID: 31127182
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Disruptive coloration and binocular disparity: breaking camouflage.
    Adams WJ; Graf EW; Anderson M
    Proc Biol Sci; 2019 Feb; 286(1896):20182045. PubMed ID: 30963917
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Crypsis by background matching and disruptive coloration as drivers of substrate occupation in sympatric Amazonian bark praying mantises.
    de Alcantara Viana JV; Campos Duarte R; Vieira C; Augusto Poleto Antiqueira P; Bach A; de Mello G; Silva L; Rabelo Oliveira Leal C; Quevedo Romero G
    Sci Rep; 2023 Nov; 13(1):19985. PubMed ID: 37968331
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evolutionary fine-tuning of background-matching camouflage among geographical populations in the sandy beach tiger beetle.
    Yamamoto N; Sota T
    Proc Biol Sci; 2020 Dec; 287(1941):20202315. PubMed ID: 33323087
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Camouflage strategies interfere differently with observer search images.
    Troscianko J; Skelhorn J; Stevens M
    Proc Biol Sci; 2018 Sep; 285(1886):. PubMed ID: 30185636
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Generalist camouflage can be more successful than microhabitat specialisation in natural environments.
    Briolat ES; Arenas LM; Hughes AE; Liggins E; Stevens M
    BMC Ecol Evol; 2021 Aug; 21(1):151. PubMed ID: 34344323
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Overcoming the detectability costs of symmetrical coloration.
    Wainwright JB; Scott-Samuel NE; Cuthill IC
    Proc Biol Sci; 2020 Jan; 287(1918):20192664. PubMed ID: 31937221
    [TBL] [Abstract][Full Text] [Related]  

  • 12. False holes as camouflage.
    Costello LM; Scott-Samuel NE; Kjernsmo K; Cuthill IC
    Proc Biol Sci; 2020 Mar; 287(1922):20200126. PubMed ID: 32156219
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Variable crab camouflage patterns defeat search image formation.
    Troscianko J; Nokelainen O; Skelhorn J; Stevens M
    Commun Biol; 2021 Mar; 4(1):287. PubMed ID: 33674781
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Spatial heterogeneity, predator cognition, and the evolution of color polymorphism in virtual prey.
    Bond AB; Kamil AC
    Proc Natl Acad Sci U S A; 2006 Feb; 103(9):3214-9. PubMed ID: 16481615
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Imperfect camouflage: how to hide in a variable world?
    Hughes A; Liggins E; Stevens M
    Proc Biol Sci; 2019 May; 286(1902):20190646. PubMed ID: 31088268
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A unique camouflaged mimarachnid planthopper from mid-Cretaceous Burmese amber.
    Jiang T; Szwedo J; Wang B
    Sci Rep; 2019 Sep; 9(1):13112. PubMed ID: 31511621
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Pigmentation plasticity enhances crypsis in larval newts: associated metabolic cost and background choice behaviour.
    Polo-Cavia N; Gomez-Mestre I
    Sci Rep; 2017 Jan; 7():39739. PubMed ID: 28051112
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Role of body size and shape in animal camouflage.
    Yu H; Lin Z; Xiao F
    Ecol Evol; 2024 May; 14(5):e11434. PubMed ID: 38746542
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Improvement of individual camouflage through background choice in ground-nesting birds.
    Stevens M; Troscianko J; Wilson-Aggarwal JK; Spottiswoode CN
    Nat Ecol Evol; 2017 Sep; 1(9):1325-1333. PubMed ID: 28890937
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Optimizing colour for camouflage and visibility using deep learning: the effects of the environment and the observer's visual system.
    Fennell JG; Talas L; Baddeley RJ; Cuthill IC; Scott-Samuel NE
    J R Soc Interface; 2019 May; 16(154):20190183. PubMed ID: 31138092
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.