These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 16959735)

  • 1. Effect of probe tube insertion depth on spectral measures of speech.
    Caldwell M; Souza PE; Tremblay KL
    Trends Amplif; 2006 Sep; 10(3):145-54. PubMed ID: 16959735
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Miniature microphone probe tube measurements in the external auditory canal.
    Hellstrom PA; Axelsson A
    J Acoust Soc Am; 1993 Feb; 93(2):907-19. PubMed ID: 8445126
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of probe insertion depth on real ear measurements.
    Dirks DD; Ahlstrom JB; Eisenberg LS
    Otolaryngol Head Neck Surg; 1994 Jan; 110(1):64-74. PubMed ID: 8290304
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Procedural considerations in the real-ear measurement of completely-in-the-canal instruments.
    Scollie SD; Seewald RC; Cornelisse LE; Miller SM
    J Am Acad Audiol; 1998 Jun; 9(3):216-20. PubMed ID: 9644619
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparison of real-ear to coupler difference values in the right and left ear of adults using three earmold configurations.
    Munro KJ; Buttfield LM
    Ear Hear; 2005 Jun; 26(3):290-8. PubMed ID: 15937410
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Estimation of eardrum acoustic pressure and of ear canal length from remote points in the canal.
    Chan JC; Geisler CD
    J Acoust Soc Am; 1990 Mar; 87(3):1237-47. PubMed ID: 2324390
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Using average correction factors to improve the estimated sound pressure level near the tympanic membrane.
    LaRae Recker K; Zhang T; Lin W
    J Am Acad Audiol; 2012 Oct; 23(9):733-50. PubMed ID: 23072965
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Use of forward pressure level to minimize the influence of acoustic standing waves during probe-microphone hearing-aid verification.
    McCreery RW; Pittman A; Lewis J; Neely ST; Stelmachowicz PG
    J Acoust Soc Am; 2009 Jul; 126(1):15-24. PubMed ID: 19603858
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sound pressure distribution and power flow within the gerbil ear canal from 100 Hz to 80 kHz.
    Ravicz ME; Olson ES; Rosowski JJ
    J Acoust Soc Am; 2007 Oct; 122(4):2154-73. PubMed ID: 17902852
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The Effect of Ear Canal Orientation on Tympanic Membrane Motion and the Sound Field Near the Tympanic Membrane.
    Cheng JT; Ravicz M; Guignard J; Furlong C; Rosowski JJ
    J Assoc Res Otolaryngol; 2015 Aug; 16(4):413-32. PubMed ID: 25910607
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The effect of occluded ear impedances on the eardrum SPL produced by hearing aids.
    Gilman S; Dirks DD; Stern R
    J Acoust Soc Am; 1981 Aug; 70(2):370-86. PubMed ID: 7288025
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Basic acoustic considerations of ear canal probe measurements.
    Dirks DD; Kincaid GE
    Ear Hear; 1987 Oct; 8(5 Suppl):60S-67S. PubMed ID: 3678652
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparison of probe insertion methods on estimates of ear canal SPL.
    Dirks DD; Ahlstrom JB; Eisenberg LS
    J Am Acad Audiol; 1996 Jan; 7(1):31-8. PubMed ID: 8718490
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparison between intensity and pressure as measures of sound level in the ear canal.
    Neely ST; Gorga MP
    J Acoust Soc Am; 1998 Nov; 104(5):2925-34. PubMed ID: 9821338
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Spontaneous otoacoustic emissions measured using an open ear-canal recording technique.
    Boul A; Lineton B
    Hear Res; 2010 Oct; 269(1-2):112-21. PubMed ID: 20600736
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ear canal pressure variations versus negative middle ear pressure: comparison using distortion product otoacoustic emission measurement in humans.
    Sun XM
    Ear Hear; 2012; 33(1):69-78. PubMed ID: 21747284
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Sound pressure level generated by individual portable sound equipment.
    Santos Id; Colella-Santos MF; Couto CM
    Braz J Otorhinolaryngol; 2014; 80(1):41-7. PubMed ID: 24626891
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Extended bandwidth real-ear measurement accuracy and repeatability to 10 kHz.
    Vaisberg JM; Macpherson EA; Scollie SD
    Int J Audiol; 2016 Oct; 55(10):580-6. PubMed ID: 27367278
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Tests of some common assumptions of ear-canal acoustics in cats.
    Huang GT; Rosowski JJ; Puria S; Peake WT
    J Acoust Soc Am; 2000 Sep; 108(3 Pt 1):1147-61. PubMed ID: 11008816
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Estimation of bone conduction skull transmission by hearing thresholds and ear-canal sound pressure.
    Reinfeldt S; Stenfelt S; Håkansson B
    Hear Res; 2013 May; 299():19-28. PubMed ID: 23422311
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.