BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 16959777)

  • 1. The 2'-phosphate of NADP is responsible for proper orientation of the nicotinamide ring in the oxidative decarboxylation reaction catalyzed by sheep liver 6-phosphogluconate dehydrogenase.
    Li L; Cook PF
    J Biol Chem; 2006 Dec; 281(48):36803-10. PubMed ID: 16959777
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Importance in catalysis of the 6-phosphate-binding site of 6-phosphogluconate in sheep liver 6-phosphogluconate dehydrogenase.
    Li L; Dworkowski FS; Cook PF
    J Biol Chem; 2006 Sep; 281(35):25568-76. PubMed ID: 16803886
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Role of the S128, H186, and N187 triad in substrate binding and decarboxylation in the sheep liver 6-phosphogluconate dehydrogenase reaction.
    Li L; Zhang L; Cook PF
    Biochemistry; 2006 Oct; 45(42):12680-6. PubMed ID: 17042485
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Proper orientation of the nicotinamide ring of NADP is important for the precatalytic conformational change in the 6-phosphogluconate dehydrogenase reaction.
    Cervellati C; Li L; Andi B; Guariento A; Dallocchio F; Cook PF
    Biochemistry; 2008 Feb; 47(7):1862-70. PubMed ID: 18205398
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Crystallographic study of coenzyme, coenzyme analogue and substrate binding in 6-phosphogluconate dehydrogenase: implications for NADP specificity and the enzyme mechanism.
    Adams MJ; Ellis GH; Gover S; Naylor CE; Phillips C
    Structure; 1994 Jul; 2(7):651-68. PubMed ID: 7922042
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Role of methionine-13 in the catalytic mechanism of 6-phosphogluconate dehydrogenase from sheep liver.
    Cervellati C; Dallocchio F; Bergamini CM; Cook PF
    Biochemistry; 2005 Feb; 44(7):2432-40. PubMed ID: 15709755
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Oxidative decarboxylation of 6-phosphogluconate by 6-phosphogluconate dehydrogenase proceeds by a stepwise mechanism with NADP and APADP as oxidants.
    Hwang CC; Berdis AJ; Karsten WE; Cleland WW; Cook PF
    Biochemistry; 1998 Sep; 37(36):12596-602. PubMed ID: 9730832
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mutation of nicotinamide pocket residues in rat liver 3 alpha-hydroxysteroid dehydrogenase reveals different modes of cofactor binding.
    Ma H; Ratnam K; Penning TM
    Biochemistry; 2000 Jan; 39(1):102-9. PubMed ID: 10625484
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Kinetic and chemical mechanisms of the sheep liver 6-phosphogluconate dehydrogenase.
    Price NE; Cook PF
    Arch Biochem Biophys; 1996 Dec; 336(2):215-23. PubMed ID: 8954568
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Kinetic studies of 6-phosphogluconate dehydrogenase from sheep liver.
    Topham CM; Matthews B; Dalziel K
    Eur J Biochem; 1986 May; 156(3):555-67. PubMed ID: 3699023
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Proper positioning of the nicotinamide ring is crucial for the Ascaris suum malic enzyme reaction.
    Aktas DF; Cook PF
    Biochemistry; 2008 Feb; 47(8):2539-46. PubMed ID: 18215074
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Location of the coenzyme binding site in the porcine mitochondrial NADP-dependent isocitrate dehydrogenase.
    Huang YC; Colman RF
    J Biol Chem; 2005 Aug; 280(34):30349-53. PubMed ID: 15975917
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Binding of coenzyme and substrate and coenzyme analogues to 6-phosphogluconate dehydrogenase from sheep liver. An X-ray study at 0.6 nm resolution.
    Abdallah MA; Adams MJ; Archibald IG; Biellmann JF; Helliwell JR; Jenkins SE
    Eur J Biochem; 1979 Jul; 98(1):121-30. PubMed ID: 38116
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Coenzyme Engineering of a Hyperthermophilic 6-Phosphogluconate Dehydrogenase from NADP
    Chen H; Zhu Z; Huang R; Zhang YP
    Sci Rep; 2016 Nov; 6():36311. PubMed ID: 27805055
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Purification and kinetic characterization of 6-phosphogluconate dehydrogenase from Schizosaccharomyces pombe.
    Tsai CS; Chen Q
    Biochem Cell Biol; 1998; 76(4):637-44. PubMed ID: 10099784
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Catalytic mechanism of 6-phosphogluconate dehydrogenase: a theoretical investigation.
    Wang J; Li S
    J Phys Chem B; 2006 Apr; 110(13):7029-35. PubMed ID: 16571018
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evidence for dimer/tetramer equilibrium in Trypanosoma brucei 6-phosphogluconate dehydrogenase.
    Hanau S; d'Empaire LP; Capone I; Alberighi S; Montioli R; Dallocchio F
    Biochim Biophys Acta; 2013 Dec; 1834(12):2647-52. PubMed ID: 24096100
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A hydrogen bond network in the active site of Anabaena ferredoxin-NADP(+) reductase modulates its catalytic efficiency.
    Sánchez-Azqueta A; Herguedas B; Hurtado-Guerrero R; Hervás M; Navarro JA; Martínez-Júlvez M; Medina M
    Biochim Biophys Acta; 2014 Feb; 1837(2):251-63. PubMed ID: 24200908
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A crystallographic comparison between mutated glyceraldehyde-3-phosphate dehydrogenases from Bacillus stearothermophilus complexed with either NAD+ or NADP+.
    Didierjean C; Rahuel-Clermont S; Vitoux B; Dideberg O; Branlant G; Aubry A
    J Mol Biol; 1997 May; 268(4):739-59. PubMed ID: 9175858
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Characterization of Plasmodium falciparum 6-Phosphogluconate Dehydrogenase as an Antimalarial Drug Target.
    Haeussler K; Fritz-Wolf K; Reichmann M; Rahlfs S; Becker K
    J Mol Biol; 2018 Oct; 430(21):4049-4067. PubMed ID: 30098336
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.