These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 16959786)

  • 1. Evidence for specificity in lipid-rhodopsin interactions.
    Soubias O; Teague WE; Gawrisch K
    J Biol Chem; 2006 Nov; 281(44):33233-41. PubMed ID: 16959786
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Electrostatic properties of membrane lipids coupled to metarhodopsin II formation in visual transduction.
    Wang Y; Botelho AV; Martinez GV; Brown MF
    J Am Chem Soc; 2002 Jul; 124(26):7690-701. PubMed ID: 12083922
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structure and dynamics of polyunsaturated hydrocarbon chains in lipid bilayers-significance for GPCR function.
    Gawrisch K; Soubias O
    Chem Phys Lipids; 2008 May; 153(1):64-75. PubMed ID: 18396152
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Lipid headgroup and acyl chain composition modulate the MI-MII equilibrium of rhodopsin in recombinant membranes.
    Gibson NJ; Brown MF
    Biochemistry; 1993 Mar; 32(9):2438-54. PubMed ID: 8443184
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Equilibrium and dynamic bilayer structural properties of unsaturated acyl chain phosphatidylcholine-cholesterol-rhodopsin recombinant vesicles and rod outer segment disk membranes as determined from higher order analysis of fluorescence anisotropy decay.
    Straume M; Litman BJ
    Biochemistry; 1988 Oct; 27(20):7723-33. PubMed ID: 3207703
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Lipid-protein interactions mediate the photochemical function of rhodopsin.
    Wiedmann TS; Pates RD; Beach JM; Salmon A; Brown MF
    Biochemistry; 1988 Aug; 27(17):6469-74. PubMed ID: 3219348
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Strong association of unesterified [3H]docosahexaenoic acid and [3H-docosahexaenoyl]phosphatidate to rhodopsin during in vivo labeling of frog retinal rod outer segments.
    de Turco EB; Jackson FR; Parkins N; Gordon WC
    Neurochem Res; 2000 May; 25(5):695-703. PubMed ID: 10905632
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Post-Golgi vesicles cotransport docosahexaenoyl-phospholipids and rhodopsin during frog photoreceptor membrane biogenesis.
    Rodriguez de Turco EB; Deretic D; Bazan NG; Papermaster DS
    J Biol Chem; 1997 Apr; 272(16):10491-7. PubMed ID: 9099692
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Transducin binding in bovine rod outer segment disk membranes of different age/spatial location.
    Young JE; Albert AD
    Exp Eye Res; 2000 Jun; 70(6):809-12. PubMed ID: 10843786
    [No Abstract]   [Full Text] [Related]  

  • 10. Insights from biophysical studies on the role of polyunsaturated fatty acids for function of G-protein coupled membrane receptors.
    Gawrisch K; Soubias O; Mihailescu M
    Prostaglandins Leukot Essent Fatty Acids; 2008; 79(3-5):131-4. PubMed ID: 19004627
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Membrane lipid influences on the energetics of the metarhodopsin I and metarhodopsin II conformational states of rhodopsin probed by flash photolysis.
    Gibson NJ; Brown MF
    Photochem Photobiol; 1991 Dec; 54(6):985-92. PubMed ID: 1775536
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Rhodopsin is spatially heterogeneously distributed in rod outer segment disk membranes.
    Buzhynskyy N; Salesse C; Scheuring S
    J Mol Recognit; 2011; 24(3):483-9. PubMed ID: 21504027
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Reconstitution of rhodopsin and the cGMP cascade in polymerized bilayer membranes.
    Tyminski PN; Latimer LH; O'Brien DF
    Biochemistry; 1988 Apr; 27(8):2696-705. PubMed ID: 2840946
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of calmodulin on the structural state of photoreceptor membranes and rhodopsin-containing phospholipid vesicles.
    Volotovski ID; Ryba NJ; Watts A
    Biochem Biophys Res Commun; 1985 Jun; 129(2):517-21. PubMed ID: 4015644
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Strength of Ca(2+) binding to retinal lipid membranes: consequences for lipid organization.
    Huster D; Arnold K; Gawrisch K
    Biophys J; 2000 Jun; 78(6):3011-8. PubMed ID: 10827979
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Protein-lipid interactions at membrane surfaces: a deuterium and phosphorus nuclear magnetic resonance study of the interaction between bovine rhodopsin and the bilayer head groups of dimyristoylphosphatidylcholine.
    Ryba NJ; Dempsey CE; Watts A
    Biochemistry; 1986 Aug; 25(17):4818-25. PubMed ID: 3768315
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Proton, carbon-13, and phosphorus-31 NMR methods for the investigation of rhodopsin--lipid interactions in retinal rod outer segment membranes.
    Brown MF; Deese AJ; Dratz EA
    Methods Enzymol; 1982; 81():709-28. PubMed ID: 7098912
    [No Abstract]   [Full Text] [Related]  

  • 18. Bovine rod rhodopsin. 1. Bleaching by luminescence in vitro by recombination of radicals from polyunsaturated fatty acids.
    Narici L; Paci M; Brunetti V; Rinaldi A; Sannita WG; De Martino A
    Free Radic Biol Med; 2012 Aug; 53(3):482-7. PubMed ID: 22634396
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Light-induced reorganization of phospholipids in rod disc membranes.
    Hessel E; Müller P; Herrmann A; Hofmann KP
    J Biol Chem; 2001 Jan; 276(4):2538-43. PubMed ID: 11062249
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Halogenated general anesthetics in visual photoreceptor membranes as examined by static and dynamic properties of rhodopsin.
    Daigle I; Gilbert M; Boucher F
    Biochem Cell Biol; 1993; 71(1-2):57-64. PubMed ID: 8392355
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.