These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

297 related articles for article (PubMed ID: 16959855)

  • 61. The role of glial cells in synaptic function.
    Bacci A; Verderio C; Pravettoni E; Matteoli M
    Philos Trans R Soc Lond B Biol Sci; 1999 Feb; 354(1381):403-9. PubMed ID: 10212490
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Glial regulation of synapse maturation and stabilization in the developing nervous system.
    Van Horn MR; Ruthazer ES
    Curr Opin Neurobiol; 2019 Feb; 54():113-119. PubMed ID: 30347385
    [TBL] [Abstract][Full Text] [Related]  

  • 63. The interplay between neurons and glia in synapse development and plasticity.
    Stogsdill JA; Eroglu C
    Curr Opin Neurobiol; 2017 Feb; 42():1-8. PubMed ID: 27788368
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Glia co-culture with neurons in microfluidic platforms promotes the formation and stabilization of synaptic contacts.
    Shi M; Majumdar D; Gao Y; Brewer BM; Goodwin CR; McLean JA; Li D; Webb DJ
    Lab Chip; 2013 Aug; 13(15):3008-21. PubMed ID: 23736663
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Neurotrophin signaling among neurons and glia during formation of tripartite synapses.
    Elmariah SB; Hughes EG; Oh EJ; Balice-Gordon RJ
    Neuron Glia Biol; 2004 Nov; 1(4):1-11. PubMed ID: 16528404
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Glia as architects of central nervous system formation and function.
    Allen NJ; Lyons DA
    Science; 2018 Oct; 362(6411):181-185. PubMed ID: 30309945
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Astrocytic control of neural circuit formation: highlights on TGF-beta signaling.
    Diniz LP; Matias IC; Garcia MN; Gomes FC
    Neurochem Int; 2014 Dec; 78():18-27. PubMed ID: 25125369
    [TBL] [Abstract][Full Text] [Related]  

  • 68. CNS synaptogenesis promoted by glia-derived cholesterol.
    Mauch DH; Nägler K; Schumacher S; Göritz C; Müller EC; Otto A; Pfrieger FW
    Science; 2001 Nov; 294(5545):1354-7. PubMed ID: 11701931
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Neuron-Glia Signaling in Synapse Elimination.
    Wilton DK; Dissing-Olesen L; Stevens B
    Annu Rev Neurosci; 2019 Jul; 42():107-127. PubMed ID: 31283900
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Neurons, Glia, Extracellular Matrix and Neurovascular Unit: A Systems Biology Approach to the Complexity of Synaptic Plasticity in Health and Disease.
    De Luca C; Colangelo AM; Virtuoso A; Alberghina L; Papa M
    Int J Mol Sci; 2020 Feb; 21(4):. PubMed ID: 32102370
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Culture of Mouse Giant Central Nervous System Synapses and Application for Imaging and Electrophysiological Analyses.
    Dimitrov D; Guillaud L; Eguchi K; Takahashi T
    Methods Mol Biol; 2018; 1727():201-215. PubMed ID: 29222783
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Neural ECM and synaptogenesis.
    Heikkinen A; Pihlajaniemi T; Faissner A; Yuzaki M
    Prog Brain Res; 2014; 214():29-51. PubMed ID: 25410352
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Synaptogenesis in purified cortical subplate neurons.
    McKellar CE; Shatz CJ
    Cereb Cortex; 2009 Aug; 19(8):1723-37. PubMed ID: 19029062
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Errant gardeners: glial-cell-dependent synaptic pruning and neurodevelopmental disorders.
    Neniskyte U; Gross CT
    Nat Rev Neurosci; 2017 Nov; 18(11):658-670. PubMed ID: 28931944
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Quantitation of synaptic, neuronal and glial development in the intermediate and medial hyperstriatum ventrale (IMHV) of the chick Gallus domesticus, pre- and post-hatch.
    Curtis EM; Stewart MG; King TS
    Brain Res Dev Brain Res; 1989 Jul; 48(1):105-18. PubMed ID: 2752570
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Viscoelastic properties of individual glial cells and neurons in the CNS.
    Lu YB; Franze K; Seifert G; Steinhäuser C; Kirchhoff F; Wolburg H; Guck J; Janmey P; Wei EQ; Käs J; Reichenbach A
    Proc Natl Acad Sci U S A; 2006 Nov; 103(47):17759-64. PubMed ID: 17093050
    [TBL] [Abstract][Full Text] [Related]  

  • 77. [Postnatal Development of Cerebellar Neural Circuits].
    Watanabe T; Suzuki H; Kano M
    Brain Nerve; 2019 Dec; 71(12):1373-1383. PubMed ID: 31787626
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Investigating CNS synaptogenesis at single-synapse resolution by combining reverse genetics with correlative light and electron microscopy.
    Urwyler O; Izadifar A; Dascenco D; Petrovic M; He H; Ayaz D; Kremer A; Lippens S; Baatsen P; Guérin CJ; Schmucker D
    Development; 2015 Jan; 142(2):394-405. PubMed ID: 25503410
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Synaptic pruning through glial synapse engulfment upon motor learning.
    Morizawa YM; Matsumoto M; Nakashima Y; Endo N; Aida T; Ishikane H; Beppu K; Moritoh S; Inada H; Osumi N; Shigetomi E; Koizumi S; Yang G; Hirai H; Tanaka K; Tanaka KF; Ohno N; Fukazawa Y; Matsui K
    Nat Neurosci; 2022 Nov; 25(11):1458-1469. PubMed ID: 36319770
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Roles of Glial Cells in Sculpting Inhibitory Synapses and Neural Circuits.
    Um JW
    Front Mol Neurosci; 2017; 10():381. PubMed ID: 29180953
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.