These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 16960968)

  • 61. GC content dependency of open reading frame prediction via stop codon frequencies.
    Pohl M; Theissen G; Schuster S
    Gene; 2012 Dec; 511(2):441-6. PubMed ID: 23000023
    [TBL] [Abstract][Full Text] [Related]  

  • 62. The joint distribution of patterns in random sequences with application to the RC-measure for expressivity.
    Kleffe J; Grau E
    Comput Appl Biosci; 1993 Jun; 9(3):275-83. PubMed ID: 8324628
    [TBL] [Abstract][Full Text] [Related]  

  • 63. A Stem-Loop Structure in
    Xu Y; Ju HJ; DeBlasio S; Carino EJ; Johnson R; MacCoss MJ; Heck M; Miller WA; Gray SM
    J Virol; 2018 Jun; 92(11):. PubMed ID: 29514911
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Mutually symmetric and complementary triplets: differences in their use distinguish systematically between coding and non-coding genomic sequences.
    Nikolaou C; Almirantis Y
    J Theor Biol; 2003 Aug; 223(4):477-87. PubMed ID: 12875825
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Evaluation of methods for predicting the topology of beta-barrel outer membrane proteins and a consensus prediction method.
    Bagos PG; Liakopoulos TD; Hamodrakas SJ
    BMC Bioinformatics; 2005 Jan; 6():7. PubMed ID: 15647112
    [TBL] [Abstract][Full Text] [Related]  

  • 66. CNCTDiscriminator: coding and noncoding transcript discriminator - an excursion through hypothesis learning and ensemble learning approaches.
    Biswas AK; Zhang B; Wu X; Gao JX
    J Bioinform Comput Biol; 2013 Oct; 11(5):1342002. PubMed ID: 24131051
    [TBL] [Abstract][Full Text] [Related]  

  • 67. How to interpret an anonymous bacterial genome: machine learning approach to gene identification.
    Hayes WS; Borodovsky M
    Genome Res; 1998 Nov; 8(11):1154-71. PubMed ID: 9847079
    [TBL] [Abstract][Full Text] [Related]  

  • 68. A genome-wide study of dual coding regions in human alternatively spliced genes.
    Liang H; Landweber LF
    Genome Res; 2006 Feb; 16(2):190-6. PubMed ID: 16365380
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Selection pressure in alternative reading frames.
    Mir K; Schober S
    PLoS One; 2014; 9(10):e108768. PubMed ID: 25271416
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Predicting Coding Potential of RNA Sequences by Solving Local Data Imbalance.
    Chen XG; Liu S; Zhang W
    IEEE/ACM Trans Comput Biol Bioinform; 2022; 19(2):1075-1083. PubMed ID: 32886613
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Statistical analysis of GeneMark performance by cross-validation.
    Kleffe J; Hermann K; Borodovsky M
    Comput Chem; 1996 Mar; 20(1):123-33. PubMed ID: 16749185
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Stochastic models for description of structural-statistical properties in DNA sequences.
    Chaley M; Kutyrkin V
    J Theor Biol; 2020 Jul; 496():110126. PubMed ID: 31866393
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Multiple errors correction for position-limited DNA sequences with GC balance and no homopolymer for DNA-based data storage.
    Li X; Chen M; Wu H
    Brief Bioinform; 2023 Jan; 24(1):. PubMed ID: 36410731
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Recognizing short coding sequences of prokaryotic genome using a novel iteratively adaptive sparse partial least squares algorithm.
    Chen S; Zhang CY; Song K
    Biol Direct; 2013 Sep; 8():23. PubMed ID: 24067167
    [TBL] [Abstract][Full Text] [Related]  

  • 75. A convolutional code-based sequence analysis model and its application.
    Liu X; Geng X
    Int J Mol Sci; 2013 Apr; 14(4):8393-405. PubMed ID: 23591850
    [TBL] [Abstract][Full Text] [Related]  

  • 76. CRANN: detecting adaptive evolution in protein-coding DNA sequences.
    Creevey CJ; McInerney JO
    Bioinformatics; 2003 Sep; 19(13):1726. PubMed ID: 15593409
    [TBL] [Abstract][Full Text] [Related]  

  • 77. A modified statistically optimal null filter method for recognizing protein-coding regions.
    Zhang L; Tian F; Wang S
    Genomics Proteomics Bioinformatics; 2012 Jun; 10(3):166-73. PubMed ID: 22917190
    [TBL] [Abstract][Full Text] [Related]  

  • 78. DnoisE: distance denoising by entropy. An open-source parallelizable alternative for denoising sequence datasets.
    Antich A; PalacĂ­n C; Turon X; Wangensteen OS
    PeerJ; 2022; 10():e12758. PubMed ID: 35111399
    [TBL] [Abstract][Full Text] [Related]  

  • 79. BioCode: two biologically compatible Algorithms for embedding data in non-coding and coding regions of DNA.
    Haughton D; Balado F
    BMC Bioinformatics; 2013 Apr; 14():121. PubMed ID: 23570444
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Visualization of the protein-coding regions with a self adaptive spectral rotation approach.
    Chen B; Ji P
    Nucleic Acids Res; 2011 Jan; 39(1):e3. PubMed ID: 20947567
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.